
www.manaraa.com

www.manaraa.com

NAVAL I r3 SCHOOL
MOITTBREY, GALil-'OBHIA 93943-500S

www.manaraa.com

www.manaraa.com

www.manaraa.com

An Eixpert System Supplemented by a DataBase Management System

Serving as an Electrical Distribution System Engineering Aid

by

ROIJ\ND LONG
ff

A thesis submitted In partial fulfillment

of the requirements for the degree of

Master of Science in

Electrical Engineering

University of Washington

1988

www.manaraa.com

c

www.manaraa.com

Blaster's Thesis

In presenting this thesis in partial fulfillment of the requirements for a Master's degree

at the University of Washington. I agree that the Library shall make its copies freely

available for Inspection. I further agree that extensive copying of this thesis is

aUowable only for scholarly purposes, consistent with "fair use" as prescribed in the

U.S. Copyright Law. Any other reproduction for any purposes or by Einy means shall

not be allowed without my written permission.

www.manaraa.com

www.manaraa.com

Table of Contents

List of Figures Iv

List ofTables v

List ofAbbreviations vl

Introduction 1

Chapter 1: Motivation and Background 3

Problem Introduction 3

Elxample System 3

Eixpert System Users 5

Expert System Domain 5

An ES and DBMS Approach 9

Ebq)ert Systems and Prolog 10

DataBase Management Systems 14

Information in a User Understandable Form 15

Information in its Most Basic and Independent Form 16

Database Consistency and Integrity 19

Informational Tools for Problem Resolution 19

ES working with a DBMS 21

Chapter II: The Data Base Management System 23

DBMS IntroducUon 23

Motivation for Prolog Implementation 23

Relation Data Base Management System Overview 23

User Interface and Command Overview 24

Coding Overview 27

RelaUon Structure 27

Database File Structure •. 29

Program Control 29

Relation Manipulation 31

Program Operation and Ebcamples 32

DBMS Concluding Remarks 42

www.manaraa.com

www.manaraa.com

Chapter ni: Prolog Expert System 43

Expert System Introduction 43

ES Goal Statement 43

Connectivity 43

Initial System Analysis 44

Single Element Failure 53

Re-energizing Lost Loads 58

Chapter IV: Conclusions 64

List of References 66

Appendix A: Prolog DBMS links 67

Appendix B: System Requirements 70

Appendix C: DBMS Command Summary 71

111

www.manaraa.com

www.manaraa.com

List of Figures

Figure 1. Bangor Submarine Base Distribution System Excerpt 4

Figure 2. SubstaUon #1, In Part 15

Figure 3. Typical System Portion 17

Figure 4. Typical Line Segment 17

Figure 5. Typical One End Point Line Segments 18

Figure 6. Code Listing for 'modify' Rule Clause 33

Figure 7. Computer Screen 1 34

Figure 8. Listing for 'mod_match' Rule Clause 35

Figure 9. Listing for 'project' Rule Clause 37

Figure 10. Computer Screen 2 37

Figure 1 1. Listing for 'Join' Rule Clause 39

Figure 12. Computer Screen 3 40

Figure 13. System Extract for B5730 Loadpath 50

Figure 14. System Portion Serving Quarters Group 7 54

Figure 15. Line Segment Types 56

Figure 16. System Modification Portion 63

IV

www.manaraa.com

www.manaraa.com

List of Tables

Table 1: Relation Branch for Substation #1 16

Table 2. BRANCH Relation for Figure 3. Typical System Portion 18

Table 3. BRANCH RelaUon for Figure 6. Substation #1 18

Table 4. BDESC Relation Records for Substation #1 19

Table 5. BKRPOS Relation Records for Substation # 1 19

Table 6. FNF Relation BRANCH to Substation #1 27

Table 7. Prolog Clause Facts for Substation #1 28

Table 8. BRANCH Database FUe Sample 29

Table 9. Selected Relation Records 41

Table 10. Example Execution Times 62

www.manaraa.com

www.manaraa.com

List of Abbreviations

DBMS

ES

FNF

SCADA

PI

RAM
LHS

RHS

AI

A&E

HVAC

EMCS

data base management system

expert system

fourth normal form

supervisory control and data acquisition

program interface

random access memory

left hand side

right hand side

artificial intelligence

architectural and engineering

heating, ventilation, and siir-conditioning

energy monitoring and control system

VI

www.manaraa.com

www.manaraa.com

Introduction

Electrical distribution systems provide power to loads. Numerous Individuals

are Involved in the design, operation, maintenance, and modification of these systems.

Traditionally these individuals have relied on drawings, operations manuals, meter

readings, and experience as primary resources in accomplishing these tasks. Emerging

as a new resource is the Ebq)ert System.

Expert Systems (ESs) are knowledge based computer programs which provide

assistance in domain specific problem solving. They solve problems by duplicating

human problem solving methods using deductive reasoning techniques in conjunction

with factual Information to analyze a problem and reach a solution. The required

reasoning skills can be obtained by analyzing the problem solving methods of human

experts. Factual Information can be organized as individual fact statements or. in the

case of large systems, the information can be gathered and organized into database

form by DataBase Management Systems (DBMSs). The codification of these reasoning

techniques and the factual information makes up the knowledge base of an ES.

The motivation for investigating electrical distribution system ESs comes from

the potential power of the computerized application of reasoning skills to power

distribution problems. The present decision to consider ESs can be likened to the need

to use computer based electronic spreadsheets such as Lotus 1-2-3. Engineers have

gotten by for a long time doing design cost estimates from a take off sheet with an

adding machine or calculator. However, with the advent of products such as Lotus 1-2-

3, engineers have switched in order to realize both improved speed and accuracy in their

work. Similarly, the ES offers both speed and multiple solutions while it minimizes

the possibility of overlooking Information. ESs also have the advantages of

incorporating the best methods to solve problems, being convenient and available (ESs

don't take vacation or get sick), and always working their best.

In addition to reasoning abilities. In the electrical distribution setting, the ES

must access and deal with large amounts of Information. This project supplements the

E:S with a DBMS. The prominent features of the DBMS (optimized data storage,

retrieval, and manipulation) aid the ES in dealing with the large quantiUes of

distribution system Information.

This thesis demonstrates an ES concerned with electrical distribution system

connectivity problems. ConnecUvity concerns the paths for transferring power from

sources to loads. Using DBMS database information, the ES analyzes how the

www.manaraa.com

www.manaraa.com

2
distribution system provides loads with power. The ES additionally determines the

effects of various system faults, such as line failures and the opening of circuit

breakers. The results of the analysis includes determining which loads have lost

service and which circuit breakers or lines have been rendered unusable. To restore

power to de-energized loads the ES analyzes the remaining system for possible

alternative service paths.

In support of the ES a DBMS manages the Information necessary to represent

the distribution system and simulate modifications to the system. The DBMS program

uses the relational model implementing those essential relational features required for

this application.

Chapter 1 discusses the motivation behind this thesis project, defines the ES

problem area, outlines the joint ES-DBMS solution approach, and provides general

background information. Through the use of an example distribution system, this

chapter reviews the nature of the work required of those who manage and maintain the

distribution system and how they approach their work. This review illustrates the need

to develop an engineering aid for analyzing system connectivity problems. The chapter

shows that problem solving techniques can be separated from the facts of a particular

problem. This separation supports supplementing an ES with a DBMS for problem

information management. The chapter concludes with background on DBMSs and ESs.

Chapter 2 examines the DBMS developed in this project. The chapter's emphasis

is three fold. First, the chapter explains the model used by the DBMS to describe the

example distribution system. Second, examples of DBMS operations provide insight

into the power of DBMSs as information managers. Third, this chapter discusses

program design and coding considerations which result from implementing the ES and

DBMS programs In Borland Turbo Prolog on an IBM AT.

Chapter 3 discusses the ES itself. The primary emphasis is on how the ES solves

problems concerning the delivery of power to loads. Examples that make use of

distribution system excerpts show the nature of power delivery problems and the

approach taken in solving them. This chapter cilso explains the methodology the ES

uses to reach solutions by walking through the example problems using pseudo-code

rules.

Chapter 4 provides concluding remarks.

www.manaraa.com

www.manaraa.com

Chapter 1: Motivation and Background

Problem Introduction

This investigation involves the development of an Expert System (ES) and a

relational DataBase Management System (DBMS) written in Borland Turbo Prolog

(Prolog) to run on an IBM AT. The ES is an engineering aid for analyzing the

connectivity problems of electrical distribution systems. The DBMS supplements the

ES as an information manager.

This study is based on an example distribution system and responds to the needs

of those who manage and operate this distribution system. This chapter presents the

example distribution system; introduces the individuals who manage and operate this

system; and reviews their tasks, resources, and problems. This review establishes that

the topical area of connectivity analysis is worthwhile and that an approach using an

ES supplemented by a DBMS is appropriate. The remainder of this chapter includes

reasons to support the proposal of an approach composed of an ES supplemented with a

relational DBMS; a discussion on the general nature of ESs and the Prolog

implementation; an introduction to relational DBMSs which includes developing the

database for the example distribution system; and a discussion of the relationship

between the ES and DBMS.

E^xample System

The example for this work is the electrical distribution system for the Bangor

Submarine Base near Bangor, Washington. The Bangor system is relatively new, less

than 10 years old. The Bonneville Power Administration (BPA) serves this distribution

system with a single 11 5 kv feeder. The submarine base distribution system begins with

a 115 kv ring which serves six 115/ 12.5 kv substations. The six substations provide

power to the remaining distribution network. In addition to the 115 kv ring feeder, the

substations can be fed by both permanent and portable dlesel generators. Figure 1

shows a portion of the system.

www.manaraa.com

www.manaraa.com

A N2
LID 13 9

Mobile
Generator

Transformer

ubstation

Distribution
Line

Switching
Devices

Figure 1. Bangor Submarine Base Distribution System Excerpt

www.manaraa.com

www.manaraa.com

E^zpert System Users

In determining the specific nature of an electrical distribution system ES one

must first answer who will benefit from Its development. Answering the question

largely means identifying those involved with the operation, maintenance, design, and

modification of the Bangor Submarine Base distribution system.

A small staff of military officer-engineers and civil service employees provide

overall management of the distribution system. Permanent civil service apprentice

and journeyman level electricians accomplish dally operations and routine

maintenance. Work of a larger nature (alterations, additions, and complex

maintenance) is primarily accomplished through the award of competitively bid

contracts. With the exception of only the largest contracts, this work is restricted to

small business contractors. Both staff electricians and contractors perform emergency

work. Private architectural and engineering (A&E) firms provide engineering designs.

Civil service staff engineers are charged with reviewing this design work. Management

of construction and maintenance contracts falls on another office. Construction

contracts are managed by military officer-engineers and civil service engineers.

Inspectors perform daily quality assurance of contractor work and assist in

coordinating utility outages. Outside A&E firms may supplement their efforts.

These groups are potential E^ users and represent the current human experts.

Expert System Domain

The broad group of individuals needing to understand the operation of the

distribution system are the target ES users. Recent research into electrical power

system engineering aids Includes specific areas such as alarm and event message

processing, isolation of faulted line sections ^ '2, reactive power and voltage

management^, and operator training^. The problems of those using the Bangor

distribution system generally focus on understanding basic system operation and

possible alternative system operations. Specifically, how does the system now provide

power to loads, will opening a specific breaker or taking a line out of service adversely

Impact service to any load, and what are the possible recovery configurations for

various fault situations. As distribution systems are generally over designed, system

cormectlvity~provlding a path from a source to the load—rather than system loading is

the primary consideration. The Issue of system loading and loss minimization through

www.manaraa.com

www.manaraa.com

6
eflficient loading has been addressed in previous research^. Reviewing the tasks and

resources of those responsible for the distribution system will show that analyzing the

paths for providing power from sources to loads is a worthwhile ES domain.

Managers exercise oversight control of the electrical distribution system. Their

concern is that the S5^tem reliably provides loads with required power. Management

may be made up of architects or engineers of any discipline. They typically do not

personally seek out detailed technical information. They do, however, need a good

overall understanding of electrical distribution system operations including the effects

of various actions on the system. For instance, managers would need to know if power

could be provided to an operations building if a given substation or line was taken out of

service. For these more general questions, they probably already understand how a

distribution system generally works or can familiarize themselves with distribution

system principles from an elementary text. For how their system works and the

outcome of a specific question they additionally refer to one line system drawings and

system operation manuals.

Staff design engineers and private A&E firms carry out needed project studies or

designs. A design of any size will involve a project manager and a design team. The

project manager, like management, may be an architect or any type of engineer. Project

managers also primarily concern themselves with overall operational issues. They

need to understand the "big picture' in order to give direction to and provide design team

co-ordination. A project meinager augments his professional experience and design

concepts with project specific information. The design team turns general concepts and

approaches into project plans and specifications. They too begin with their own

methods and approaches for doing a particular type design. If they don't have an

adequate background for a particular project they find reference materials—design

guides, code books, and handbooks—which provide them with the 'how it is done'

methods. To begin the design they also need a full and complete knowledge of the

project system. The design team, using their experience and project specific

information, develops design alternatives. Each alternative must be tested to ensure it

works smoothly with the rest of the existing system. Testing may involve amending a

set of system drawings to reflect the results of the proposed work. The 'new' system can

then be checked to verify its operation under normal and fault conditions. This step

must be exhaustive to ensure nothing is overlooked. Considerable design time is

devoted to getting up to speed with the project system and testing design alternatives.

Permanent system operators are the most familiar with the distribution

system's operation. To understand the nature of this experience consider the training

www.manaraa.com

www.manaraa.com

7
of a new operator. The new operator is first briefed by an experienced foreman. The

foreman, using a one line drawing, provides a system overview. He discusses general

system configurations, system capacities, equipment ratings and types. The new

employee next receives a field tour. Emphasis is placed on major facilities (substations,

dlesel generators, and large loads) as weU as key or troublesome components. While

trsilnlng, the operator becomes familiar with system operations and parameters

through detailed system and component drawings and their manuals. The more

experienced operators supplement the training with explanations of how 'things are

done here.' E^^entually the operator has seen most of the equipment and system

operations several times and begins to know how this distribution system works.

Distribution system operation generally does not require frequent changes In

the way loads are served. When alternative service paths are required, the design

usually provides several options. With time, operators leam the best or easiest means

of serving each load. Operators rely on experience and seldom need to make more than

slight use of reference materials. On a day to day basis experience proves quite

satisfactory. E>en if a fault occurs on the system, the operator can refer to Supervisory

Control and Data Acquisition (SCAD.^ system output, meter indicators, and field

inspection to determine the system's faulted condition. Since the system is operated in

a limited number of configurations, the operator generally has no difficulty visualizing

a corrective configuration.

Unfortunately, when the fault Is in an unusual place the operator may stumble.

If the system is in an unusugil configuration to begin with, the operator's experience

may not offer a solution. Multiple faults can also undermine reliance on experience. At

times such as these the operator returns to the drawings for specific system

information to find power paths for de-energized loads. Since distribution lines are

normally oversized, line loading is a secondary concern to finding an available path.

Maintenance and construction contracts often require the distribution system

to be placed in unusual configurations in order to accomplish desired work. At these

times the contract managers, inspectors, and operators need to satisfy themselves that

the procedures suggested by the contractor or outlined In the contract will work without

causing a power loss. The proposed operations are analyzed being very careful to ensure

all affects are considered. As contractors, inspectors, and contract managers tend to be

the least famUiar with the system, the necessary analysis is a time intensive effort.

While each of these groups have different motivations for understanding the

basic operation of the distribution system, they share the need to be able to accurately

smalyze how the system works. This common need includes a general understanding of

www.manaraa.com

www.manaraa.com

8
how the system serves loads, knowing what results from various ^stem operations,

and the need to restore de-energized loads in a timely manner. Each person has the

background knowledge and skills to figure these problems out. They only need to apply

their problem solving techniques to the particular facts concerning this distribution

system and the problems needing to be solved.

The goal of this project's ES is to assist these users in analyzing normal and

alternative system operation configurations. This ES determines which of the system's

lines and loads are energized; identifies the paths from sources to loads; evaluates the

effect of opening a circuit breaker—what loads and lines become de-energized; evaluates

the effect of a faulted circuit breaker or system component—what loads and lines

become de-energized and which are rendered unusable; and provides alternative paths

for re-energizing de-energized loads.

Having stated the goal of the ES in serving as a distribution system engineering

aid. one needs to address why it should. Quite directly, while the current methods of

finding answers to these problems work, using an ES is am improvement. The first

objection to using an ES might come from the experienced system operator, the human

expert, who maintains that everything can already be handled quite nicely without any

assistance. Take for instance, however, the problem of identifying what happens when

a given breaker is opened. Anyone familiar with distribution systems would consider

this problem routine and straight forward. They would have a methodology for

determining which lines and loads were de-energized when the breaker opened. They

would then need to apply their problem solving method to the particular facts of this

problem. The experienced operator may not even need to refer to any drawings for

additional information before completing his solution. Of course, in his haste he might

overlook something. Others would need more time and reference material. Each would

probably reach a solution to the problem. This simple example points out that not all

users (or experts) have the same system knowledge and experience or proficiency at

problem solving. By encoding the experts' problem reasoning methods and the system

information into an ES knowledge base to take advantage of computerized reasoning

these types of problems are more quickly solved while ensuring nothing is overlooked

and all possible solutions are discovered. Reducing the time required to solve problems

and improving the quality of the solution by ensuring its accuracy and completeness

answers why this type ES should be used.

In reviewing the needs of the various potential user groups, it becomes apparent

that system operators' needs are somewhat different from the other groups. In their

case, the SCADA provides on-line sensing of the system's conditions including what

www.manaraa.com

www.manaraa.com

9
loads are being served. They need an ES that recognizes faults and problems and then

determines solutions to the fault problems. The other groups can be chgiracterized as

off-line users. They use information that represents what the SCADA provides and

want to run "what If drills on the system. In this case the ES needs to determine the

effects of system operations Instead of sensing them as In the on-line case. Since the

off-line case eliminates the need to consider the SCADA-DBMS interface and since the

off-line users are the target group most likely to embrace an ES as an aid. the off-line

needs are examined in this thesis. The ES serves as an off-line engineering aid in

analyzing distribution system connectivity problems.

An B^zpert ^stem and DataBase Management System Approach

This project supplements the ES with a DBMS. The DBMS acts as the source of

system specific information and as an information manager. Specifically, the DBMS

provides the ES with database information describing the distribution system and the

ability to modify that information. This chapter discusses the general features of any

relational DBMS. Chapter 2 illustrates specific information management techniques

by demonstrating some relational operations using the DBMS written in Prolog to

support the E^.

There are two reasons for using a DBMS in this way. First, DBMSs are

particularly efficient at storing, manipulating, and retrieving information. Second,

efficient management of information argues for a centralized, independent data

management system for use by application programs.

The first reason for using a DBMS concerns utilizing its data management

strengths. The goal for the DBMS written in this project was to include those DBMS

features which most characterize a relational DBMS in so far as they could be

reasonably Implemented in Prolog and were necessary in the ES companion role.

These features include: offering a means of entering information which describes the

system; the capability to add to, delete, or change that information; and the ability to

take information in one form and change It into another.

In an on-line version of this project's ES, the SCADA's information about line

loading, load requirements, and breaker positions would Interface to the DBMS. A

DBMS routine could take raw data, condition it, and store it as database information.

This information would then be available to the ES. For the off-line version of the ES

the data Is manually entered into the DBMS in Its 'natural' form. In addition to storing

Information which describes the distribution system, the DBMS can be used to describe

www.manaraa.com

www.manaraa.com

10
modifications to the system. As an example, a contractor can determine how taking

several lines out of service affects system operation by deleting the database records

that represent those lines and then having the E:S evaluate the amended database.

The second reason for using a DBMS Is the argument that data should be

managed separately from applications that make use of It. From the discussion

concerning what distribution system work was done and how people went about doing

it, one could see that people applied their own problem solving techniques to the facts of

a specific problem. These examples Illustrate the Idea of separating the application

program (problem solving technique) and data Itself (the specific problem). These

examples support the argument that a problem solving technique is largely

Independent of the specific information of any given problem.

With this approach the ES serves as the codification of the ways people solve

distribution system problems without carrying with it the Information about that

given distribution system. One practical advsintage of keeping system specific data

sepsirate from the E^ is that the ES then becomes much more mobile. The same ES

could be used with other distribution systems without extensive modifications. The

DBMS then provides problem specific information and general Information

management support. For a simple problem with limited information this separation

may not seem significant. However, as ESs take on larger systems, the amount of data

involved becomes quite significant, so could the advantages gained from using a DBMS.

Expert Systems and Prolog

This section discusses the general nature of Expert Systems (ESs) and

Implementing them In Prolog. ESs are computer programs which, by reproducing the

methods used by human experts, provide assistance In domain specific problem

solving. Domain specific problem solving means the ES concentrates on solving

problems in a single topical or functional area. This ESs domain is connectivity

within an electrical distribution system. Providing assistance may mean faster

solutions, being able to consider larger systems or more complex problems, or simply

not overlooking any of the problem facts or solutions.

To solve any problem an ES must apply the human expert's problem solving

know-how to the facts of the problem. E^ert know-how Includes formulas,

relationships, procedures, and Instincts in the form of reasoning rules. These rules and

the problem facts are codified to form the ES's knowledge base. The ES's Inference

engine then applies appropriate rules to the available facts to reach problem solutions.

www.manaraa.com

www.manaraa.com

1

1

As an ES is a computer program, the knowledge base and inference engine must

be encoded in a computer language. Traditional programming languages handle

encoding of facts without any problem. For example, to encode the maximum current

capacity of a specific line, programmers can use a variable assignment such as

line_current(Ll 14Z)=7000. However, encoding the other half of the knowledge base, the

reasoning rules, traditional programming languages do not handle well. The difficulty

arises from traditional computer languages emphasizing variable assignment and

program control. They specify how variables are updated and used based on other

variables using an essentially sequential program control. The programmer

concentrates on describing a rigid control sequence of how the program (and variable

assignments) will be carried out. What is being calculated though is usually implicit.^

These languages are described as imperative for they give commands and direction.

This programming method does not readily duplicate human reasoning.

A recent class of programming languages is non-Imperative or declarative.

Their emphasis is not on how the program is executed but rather on describing what is

being evaluated or calculated. These declarative languages include LISP, OPS83. and

Prolog. Borland Turbo Prolog (Prolog) was selected to Implement both the ES £ind the

DBMS. There were two primary reasons for this selection. First. Prolog which stands

for Programming in Logic, uses a predicate calculus rather than depending on

sequential instructions. The predicates form conditional 'if-then' rules which allow

Prolog to deduce or infer new facts from other facts. This ability to infer conclusions

from other information is a characteristic of human reasoning. Second, the task of

integrating the various knowledge base rules and facts to reach a conclusion is taken

care of in Prolog. Prolog does the integration with its built-in inference engine. These

features make Prolog a good candidate for modeling this tj^je of human reasoning.

A general discussion of Prolog programming follows. A full treatment of

standard Prolog is given by Clocksin and Mellish^. Borland Turbo Prolog is a superset

of standard Prolog and is described in various publications as well as its

manufacturer's manual^.

Prolog programs are based on an application of predicate calculus. Predicate

calculus or propositional logic is built around the use of predicates. Predicates are

functions which return either a true or false value when evaluated. A predicate

evaluates true only if its argument variables are substantiated or matched with known

values. The simplest Prolog program contains a 'predicates' and a 'clauses' sections.

TTie 'predicates' section simply declares the predicates to be used in the clauses

section. A predicate expresses the relationship between the information of its

www.manaraa.com

www.manaraa.com

12
arguments. It has a name and an ordered set of arguments or attributes. The syntax of a

predicate is 'name(al.a2.a3)'. As an example, the predicate

'bkr_info(name. position, rating)' maintgiins information concerning a breaker's

name, its present position, and its instantcineous current rating.

The program's clauses section consists of fact clauses and rule clauses. Upon

program execution these are active in RAM and become part of the program's working

memory. A fact clause is merely a single instance of a predicate. For example, for the

predicate bkr_lnfo(name. position, rating). bkr_lnfo("SDlA"."open". 10000) is a single

fact clause. E^ch fact clause can be likened to a database record. Rule clauses take

individual predicates and form them into conditional if-then statements.

Rules are used to reach Implicit facts or conclusions. In Prolog the form of the

rule is 'A IF B' or. stated In 'if then' form. 'IF B THEN A.' The rule can be viewed as two

parts-the left hand side. LHS. and the right hand side. RHS. The LHS of the clause acts

as the current goal trying to be satisfied. The FIHS is a combination of predicates which

make up the conditions or subgoals necessary to satisfy the LHS. For example, the

following rule determines the position and rating of a breaker.

bkr_lnfo(Breaker. Position. Rating) if

bkr_posltion(Breaker. Position) and

bkr_ratlng(Breaker. Rating).

If the program were trying to determine the position sind rating of the breaker SDIA the

goal bkr_lnfo("SDlA", Position. Rating) would Invoke this rule. For this rule to

evaluate true, clause facts must exist or be deduced for bkr_positlon("SDlA". Position)

£ind bkr_rattng("SD lA'.Ratlng). Each of these RHS predicates become subgoals of the

rule. The subgoals are satisfied if v£ilues are matched or 'bound' to the variables

•Position' and 'Rating.' Values bound to RHS predicate variables also become bound to

the same variables in the LHS of the rule. Once the LHS is satisfied by the binding of

values for SD lA's rating and position, an implicit fact is established and the rule

returns true. If either of the subgoals bkr_position("SD lA", Position) or

bkr_ratlng("SDlA", Rating) are not substantiated, the LHS is not satisfied and so the

rule returns false. Hence, Prolog relies on if-then rules to reach conclusions.

The Prolog programmer concentrates on the relationships the rules represent.

Consider the case where the method of calculating delivered power is dependent on

system configuration. There might be six different configurations to consider. Each

system configuration would require its own power calculation formula. In Prolog, the

www.manaraa.com

www.manaraa.com

13
six configurations and calculation methods would require six rules. In addition to one

of the power foimulas. the RHS of each rule would include the predicates necessary to

uniquely determine the system configuration appropriate for that power calculation

formula. Other than including those conditions necessary for using any given rule, the

programmer provides no program direction as to when the program goes to or uses any

one rule. In execution Prolog handles the details of matching the situation (facts) of

each configuration to the power calculation formula. In this way the programmer

concentrates on describing how the LHS of the rule is satisfied by the combination of

RHS predicates.

The whole set of rules along with any clause facts make up the clauses section.

Program execution is begun with a user question (goal) in the form of a predicate.

Prolog then selects rules which are appropriate for satisfying the goal or subgoal being

pursued.

The implicit facts developed In satisfying a goal or subgoal are transitory in

nature. Unless made part of the working memory, the facts developed exist only while

attempting to satisfy the subgoal. To support the need to make deduced facts permanent

and likewise remove facts no longer true. Prolog supports a dynamic database. This

feature allows the program to have permanent rules, permanent facts, and dynamic

facts in working memory.

The command 'assert' places facts into the dynamic database. The command

'retract' removes facts from the dynamic database. Predicates for the d5mamic database

are declared in the 'database' section. These predicates, just like regular predicates, are

used as part of rules within the clauses section. To become facts within working

memory, however, the program must take positive action and 'assert' a database

predicate, with its given set of argument values, into the dynamic database as a fact.

When a given fact is no longer needed or is no longer true, the program takes positive

action to 'retract' the clause fact from the dynamic database.

The distribution system ES consists of a distribution system knowledge base,

Prolog's built-in inference engine, and a querying Interface. The distribution system

knowledge base consists of if-then rules representing the ways distribution system

experts step through solving various problems and predicate clause facts representing

distribution system information. A querying interface allows the user to submit

questions (goals) which the inference engine attempts to answer using the knowledge

base information.

www.manaraa.com

www.manaraa.com

14
DataBase Management Systems

The Inclusion of a DBMS as part of an ES Is based on its data management power

and convenience as a central data source. Most engineers are comfortable with the

concept and use of databases. The DBMS as a program which works with databases is

also a comfortable idea. Most, however, have only a fuzzy feeling for the full

capabilities of DBMSs. The purpose of this section is to give some clarity to the notion

of a DBMS, particularly the relational model DBMS, and, in doing so. to further develop

the distribution system model. The convenience of using a DBMS as a data source

should silso become clear. For a complete treatment of the DBMS topic refer to a text on

the subject.

9

A design engineer may decide he needs some organized method of keeping track

of all the possible circuit breaker types used in distribution ^stem design. He could

develop a 'distribution_breakers' information table consisting of rows and columns.

Each row acts as a record of information for a particular circuit breaker type. Each

column stores information about some attribute of the circuit breaker. In this example

the following might make up three records from the database:

type breaker voltage max current type relay

lxas2 12.5 100.000 c

lxas3 12.5 250.000 b

2xas3 7.5 75.000 a

His entire table would consist of all the records made up in this form. A database

program would include the functions necessary for entering, modiiying, and retrieving

records from this table.

A DBMS, however, consists of much more. A DBMS is a program composed of

those procedures necessary to facilitate database creation; data input, storage, and

retrieval; and database manipulation. The power of database manipulation is what

most characterizes DBMSs.

The power and flexibility in making database manipulation operations depends

on the data model. While data can be modeled in several ways, the relational model is

considered by many to best achieve the needs of maximizing flexibility while retaining

manipulative power. Most DBMS models treat the relationship among record data

similarly, as an ordered set of attributes. In the relationsil model, the entire set of

records (the table) is called a relation. All the relations on a particular subject, the

distribution system for example, make up the database. What further differentiates

www.manaraa.com

www.manaraa.com

15
data models is how they handle connections between relations. In the relational model

there is no fixed connection between relations. The lack of any fixed connection

between the relations allows the information within the database to be reorganized as

desired to form new relations using attributes common between relations.

For an engineer, the relational DBMS serves as follows:

-1) provides information in a user understandable form;

-2) provides information in its most basic and independent form;

-3) maintains database consistency and integrity;

-4) provides informational tools useful in problem resolution. 10

Information in a User Understandable Form

Effective use of any system requires that the user understand the system's

organizational model and be willing to work with that system. So it is with DBMSs.

The user must be able to organize his data in an easily understood form. Relational

databases organize information in tabular form. As with other database models, each

row is a record. A record holds a set of related attribute values. E^ch column of the

table stores a particular attribute of the table. As an illustrative example, consider the

relation BRANCH modeling the topology of the Bangor submarine base substation # 1

shown in part as figure 2. Table 1 shows the relation for this figure's topology. As with

other models the columns represent relational attributes—node field, element field, and

via field. Each row is a relation entry. Each entry within the relation is unique.

"X7B30 J
Tl MSXl~

J J^ SD30 r SDTl (^

f NSl »NS2 4

SDMSXl

NS3

^ NS4 A NS5

SSD114
r'

LI 14 1

SD115

LI 15

Figure 2. Substation #1. in Part

www.manaraa.com

www.manaraa.com

16
Table 1. BRANCH delation for Substation #1

attributes: node field. element field. via field

entry #1 nsl. subl. none
entiy #2 ns2. subl. none
entry #3 ns3. subl. none
entry #4 ns4. subl. none
entry #5 ns5. subl. none
entry #6 ns4. LI 14, SD114
entry #7 nsl. B30. SD30
entry #8 ns2. Tl. SDTl
entry #9 ns3, MSXl. SDMSXl
entry #10 ns5. L115. SD115

Information in its Most Basic and Independent Form

While these relations can be developed in any manner, data independence

requires that the relation be based on the data's natural relationships rather than any

specific application. If one were developing a database to support a specific application

it may seem more reasonable to model the system and data management toward that

specific application. That might be an acceptable approach under certain conditions.

These conditions would include being sure that the nature of the application will not

change and require that the data be changed; that the data being collected for this

application is not already available elsewhere or similarly needed elsewhere; and that

the results of the application program using this data are not of interest beyond the

application program's purpose. Unfortunately these conditions seldom exist.

Computer software by its very nature changes. It either does not do exactly what was

really required or does it so well that more is desired. Concerning whether the source

data is available or needed elsewhere, the very nature of large engineering systems or

Information systems of any type tend to make information common to several

applications. Similarly, when an application program uses information to perform its

task it is likely that the program's resultant information may be of use to other

systems. Having data in its most basic and independent form enables the data to be

efficiently shared between applications as well as allowing for the maintenance of

database consistency and integrity (discussed below). The process of obtaining, storing,

and manipulating information for use by applications is what DBMSs are all about.

The current 'state of the art' for structuring data in its principal independent form is

"fourth normal form" (FNF) normalization!!. Developing distribution system

relations begins by describing this system's topology. Figure 3 represents a typical

portion of the system. The system's topology is modeled as a set of connected branch

elements. The branch element end points are labeled as nodes. Note that loads only

www.manaraa.com

www.manaraa.com

17
have a single endpoint and that each load branch has a switching device associated

with it.

SDPIC SD5096

Nl. ./^

N1.7

N1.8

Load

Lines

Nodes

Figure 3. T3rpical System Portion

Figure 4 shows a typical line branch element pulled out of the system's drawing. In any

relation, certain attributes are considered key attributes. The key attribute fields

uniquely Identify a speclflc relation entry. To represent the distribution's system

topology in FNF, the branch element of figure 4 must be characterized by one or more

key attributes so that each unique combination of key attribute values matches up with

only a single set of remaining attribute values.

-y^
•Line/Network
Seqment

O-V^ndpolnt

^Switching Device

Figure 4. Typical Line Branch Element

Figure 5 shows the previous line segment represented as two 'one end point' segments.

When viewed in this way. each of the 'one end point' segments can be uniquely

identified by two of its three characteristics-segment name, endpoint name, or

switching device name. Segment name and endpoint name are used as the key field

attributes which uniquely describe the switching device attribute. The notation for

segment name and endpoint name being key field attributes describing the switching

www.manaraa.com

www.manaraa.com

18
device attribute is:

(endpoint name, field segment name-> switching device).

In the case where there is no switching device the attribute value is filled In by the word

'none'. Table 2 illustrates this relation, BRANCH, describing the topology of figure 3.

•-r\

r\^

Figure 5. lypical One End Point Line Segments

Table 2. BRANCH Relation for Figure 3. Typical System Portion
attributes: endpoint name field segment name switching device

N1.2. B5096. SD5096
Nl.O. LSPIC, none
N1.2, LSPIC, SDPIC
Nl.O. L114Z, none
N1.7, L114z, none
N1.7, L114y, none
N1.8. L114y, none

As a more complex example, table 3 illustrates this relation describing the topology of

substation #1 as shown in figure 2. In this example both key attribute fields are

required to uniquely identify various line segments.

Table 3. BRANCH Relation for Figure 6. Substation #1
attributes: endpoint name field segment name switching device

nsl. subl none
ns2. subl. none
ns3. subl. none
ns4. subl. none
ns5. subl. none
ns4. L114. SD114
ns?„ Tl, SDTl
nsS, MSXl, SDMSX
ns5, L115, SD115
nsl. B30, SD30

For the ES two other relations, BDESC and BKRPOS, are needed. BDESC stands

for branch description and is described by:

(element -> type, rating).

'Element' refers to the branch element's name. Type' refers to the element's type—load,

line, or source. The 'rating' attribute serves to store the line's or source's maximum

capacity and the load's maximum load value. Table 4 lists the BDESC records for that

portion of the system illustrated in figure 2, substation #1.

www.manaraa.com

www.manaraa.com

attributes: element type
subl. source.
L114, line.

Tl. line.

MSXl. line.

LI 15. line,

B30. load.

19

Table 4. BDESC Relation Recozds for Substation #1
rating
8E6
1E6
1E8
1E8
1E6
30

BKRPOS represents breaker position. BKFJPOS relates each switching device to Its

current position:

(breaker -> position).

"Breaker' stores the switching device's (breaker's) name. The breaker's position is stored

in 'position'. Table 5 lists the BKRPOS records for that portion of the system illustrated

in figure 2. substation #1.

Table 5. BKRPOS Relation Records for Substation #1
attributes: breaker position

SD30. closed
SDTl. closed
SDMSXl. open
SD114. closed
SD115. closed

The description of the distribution system is limited to these three relations as they

adequately serve to demonstrate the DBMS and contain the information required by

the expert system.

Database Consistency and Integrity

The consequence of maintaining data In FNF Is that data Is in its natural form

rather than project specific form. Any given user of the database begins with the same

fundamental information. The FNF format allows the DBMS to configure or structure

database information as required for use by any specific application. This form avoids

unnecessary file duplication and updating problems.

FNF also promotes database consistency and integrity. By assuring that data Is

maintained in its most basic form, without duplication within the database, every user

will get the same data values. Avoiding duplication of data and unnecessary data

dependencies cilso helps control database integrity. Completeness and soundness In the

database Is the result of a well understood and easily maintained configuration.

Informational Tools for Problem Resolution

DBMSs manipulation strengths provide the engineer with em environment

useful for engineering problem resolution. By querying the database, access to required

www.manaraa.com

www.manaraa.com

20
information is obtained from much larger pools of information. The basic relations

can be joined together to create new relations through powerful manipulative

capabilities, relational algebra.

Database manipulation consists of both operations within a single relation and

operations between two relations. Ebcamples of database manipulation features

include: querying the relation based on selection criteria and forming a new relation

from an existing single relation or from two existing relations.

As an example ofjoining two relations together to form a third, consider the

following records:

relaUon BRANCH
attributes: node field. element field. via field

n2.39
n2.39
n2.39

bmh8
bl014
bl015

sdmhS
sdl014c
SdlOISc

relation BKRPOS
attributes: via field. position field

sdlOISc
8dl014c
sdmhSb

closed
closed
open

relation BRANCHOPEN
attributes: via field, element field. position field

SdmhSb
8dl014€
SdlOISc

bmhS
bl015
bl015

open
closed
closed

The first two databases act as the source databases. The third database results from

joining the first two. As shown, both contain the attribute Via field' which stores

Information concerning circuit breakers Those records with common 'via field' values

(shown in bold type) serve as data sources for the new database record. The third

database contains this common field as well as the 'element field' taken from the first

database, and the 'position field' taken from the second database.

In this example the BRANCH and BKRPOS relations were joined together using

the common attribute called "via field' to form a new relation BFiANCHOPEN. The new

relation contains the database information concerning which element each breaker is

associated with and the present position of each breaker. In general, in the relational

model DBMS, relations can be joined using any or all of their common attribute fields.

www.manaraa.com

www.manaraa.com

21
ES Working With a DBMS

This paper proposes that an E^ and a DBMS work together as a distribution

system engineering aid. The DBMS supplements the ES by acting as its source for

information about the distribution system. The ES takes this information and

together with its rules solves problems concerning system connectivity.

For the ES to solve these problems it needs to know about: ^stem topology--how

the system branch elements are connected together; the function of each system

element—does it use power (a load), transmit power (a line), or provide power (a source);

and the status of system elements—are circuit breakers and switching devices open or

closed. This is the information required from the DBMS.

How does the DBMS get this information? Some of the information, system

topology and any element's function, is static. Static information can be manually

entered into the DBMS one time as the relations BRANCH and BDESC. The position of

system switching devices is not static. The SCADA system can provide this

Information. In the case of an on-line ES there would need to be a hardware/software

interface between the SCADA and the DBMS. This project, however, considers the off-

line user. For their purposes there is a set of data for the 'normal position' of all devices.

The relation concerning switching device positions is BKRPOS.

These relations comprise the database information for the ES. From this

information the ES determines the system's initial conditions. Should the user desire

to begin with a non-normal initial configuration, one modifies the original input

relations by using the DBMS. Using the DBMS is necessary when testing design

alternatives which require modifying existing topology. Alternatively, the user can

input the normal configuration and interactively, with the ES, test system response by

opening switches or removing lines. The interactive mode is oriented to considering

system faults.

The ES requires only part of the information contained in the distribution

system database and it requires it in a different form. The ES uses a single relation,

BINFO. The format of BINFO is:

(node, branch->type, breaker, position).

For BINFO the FNF is abandoned in preference of a relation structure more suitable for

the needs of the ES application. The ES calls upon a relation preparation program to

perform the necessary relation manipulations and data format conversion to prepare

an ES compatible BINFO relation. Appendix A discusses other general methods of, and

obstacles in. linking an ES with a DBMS.

www.manaraa.com

www.manaraa.com

Notes to Chapter 1
^^

1 Tomsovic, Liu, Ackerman. and Pope, "An Expert System as a Dispatchers' Aid for the
Isolation of Line Section Faults", copyright 1986 IEEE

^Komal. Sakaguchi, and Takeda, "Power System Fault Diagnosis with an Expert
System Enhanced by the General Problem Solving Method", Mitsubishi Electric

Corporation Central Research Laboratory, Hyogo Japan

^Liu and Tomsovic, "An Expert System Assisting Decision-Making of Reactive
Power/Voltage Control". PICA conference. May 1985. pp.242-248

^alukdar. Cardozo, and Leao. 'Toast: The Power System Operator's Assistant". IEEE
Computer. July 1986 pp53-60

^Liu. S.J.Lee, and Venkata, "An E^ert System Operational Aid for Restoration and
Loss Reduction of Distribution Systems", Depsirtment of Electrical Engineering,
University of Washington

^Allen and Pokrass. "Logic and Functional Programming". IEEE Potentials, October
1987, pp.2 1-24

^Clocksin and Mellish. "Programming in Prolog". New York: Spring-Verlag. copyright
1984.

^Borlcind Intemationcil. Inc., "Borland Turbo Prolog version 1.1". copyright 1987.

^sichritzis and Lochovsky. "Data Base Management Systems", Academic Press, New
York, copyright 1977.

l^Damborg, Ramaswaml, Jampala, Venkata, "Application of Relational Database to

Computer-Alded-Engineering of Transmission Protection Systems", Energy Group,
Department of Electrical Engineering, University of Washington

l^Fagin, "Multivalued Dependencies and a New Normal Form for Relational

Databases." ACM Trans, on Database Svstems . Vol. 2, No. 3. Sept. 1977, pp.262-278

www.manaraa.com

www.manaraa.com

Chapter lb The Data Base Bianagement System

DBMS Introduction

This chapter deals with the DBMS developed as part of this thesis project. It is a

relational model DBMS written In Prolog. In order to develop further appreciation of

the potential of a DBMS as a data manager and engineering tool, this chapter discusses

the Implemented DBMS features and gives examples of how they perform. Emphasis is

also given to the Prolog Implementation and program design considerations.

Ebcaminlng the Prolog code concerning its rules and facts provides additional Insight

Into the nature and flexibility of the programming language.

Motivation for Prolog Implementation

The motivation In developing a Prolog Implemented relational DBMS was

having a DBMS whose structure and code were well understood and available for use as

a companion to the ES. This enhanced the joint use of the E^ and DBMS by permitting

the development of a relation preparation program. The relation preparation program

performs the necessary manipulations of the FNF distribution system relations to

reorganize the database Information into a relation specifically for the ES.

Relation Data Base Management System Overview

The goal for the Prolog DBMS was to Included those DBMS features which most

characterize a relational DBMS in so far as they could be reasonably implemented in

Prolog and were necessary in the E^S companion role. The DBMS was developed without

further consideration of its role as a ES companion. This approach preserves the basic

goal of treating data in its most natural form under the premise that information

should be managed on its own merits and not that of the target application.

www.manaraa.com

www.manaraa.com

24
The basic relational DBMS features Included is this project's DBMS are:

friendly user interface;

basic help information;

creating new relations;

selecting an existing relation for manipulation;

entering records into the selected relation;

viewing relations in whole or based on selection criterion;

modifying existing records;

projecting a new relation from an existing one;

joining two relations to form a new relation.

The user Interface refers to how the user directs the program to execute commands. A

simple DBMS uses menus to lead the user though the necessary steps in specifying

commands. While the use of menus is very easy it is also slow and becomes cumbersome

as one gains proficiency. More sophisticated DBMSs use a simple natural querying

language. Commercial DBMSs Integrate these two approaches so that novice users can

rely on menus while learning and have benefit of the speedier querying language when

the DBMS is mastered. Help Information varies in both method of access and degree of

detail. The remaining listed functions concern relation manipulation.

These relation manipulation features are selected through the user interface.

The DBMS being demonstrated here does not attempt to duplicate aU the relational

operations found in full featured commercial products. It does, however, try to

Implement the select, project, and join operations.

In addition to the previously mentioned features the following additional

features exist:

directory information concerning available databases;

£in erase function for removing database clauses from RAM;

an information window indicating the active relation; and

a time and date display.

User Interface and Command Overview

The user interface adopted attempts a compromise position between the menu

and query language approach. A direct query language approach is used for general

program direction. It is felt that a user would quickly become familiar with this part of

the program's operation and would benefit from the directness of a query language more

than the aid of a menu system. Some of the more complex relational operations use a

www.manaraa.com

www.manaraa.com

25
prompting menu-like approach. A prompting approach recognizes that the user is

likely to need more assistance with these operations. Prompting also avoids the

necessity of complex query language parsing (decoding of more complex query language

commands) or requiring a rigid pattern of simpler direct language commands. This

section illustrates the query language by showing Its use in Invoking the basic program

functions. In doing so this section also provides an overview of the Implemented

program functions. Appendix C contains a further summary of DBMS commands.

The DBMS uses keyword phrases for program direction. These may be of two

forms—long and short. An 'action' word £ind 'object' phrase comprise the first or long

form. The action word is the function to be performed by the DBMS. The object phrase

Indicates the files being operated upon. For example, 'enter rl' directs the program to

enter records in the relation rl. The second or short form uses only the action word.

For example, 'enter' would direct entering new records into the current relation. Should

there not be a current relation, cin error message would result requiring a relation to be

selected. Some desired actions such as 'join rl r2 r3' forjoining relations rl and r2 to

form r3 have no short form.

The short command 'help' triggers a help information screen in the primary

window. This screen provides a concise listing of program functions. Additionally, the

key action word accompanies each program function description.

In creating any relation the first action involves defining the relation. The

action word 'new' and object phrase 'name' triggers this function. For example, 'new

bkrposa' begins creating a relation called BKRPOSA. Note that only single word

alphabetic names are supported. The actual defining of the relation involves naming

the fields followed by assigning field types and lengths.

At this point the relation BKRPOSA is the active relation. Should the user desire

to select a different relation for use, the command 'select' would be used. Should the

select command be used alone, without an object phrase, the relation BKRPOSA as the

last active relation Is automatically assigned as the object phrase. In order to switch to

a new relation that relation's name would be used as the object phrase. An example of

switching to the relation BRANCH would be 'select branch.'

Once the appropriate relation has been selected the user is ready to manipulate

that relation. The manipulation commands involving a single relation Include: enter;

view; modify; and project. To enter new records the short command is 'enter' while the

long command is 'enter branch.' Using the long form of the command avoids the need to

use the 'select' command. The program uses the field's name. type, and length as the

field input prompts.

www.manaraa.com

www.manaraa.com

26
In viewing records, the user may choose between viewing all the records within

the relation or only selected records. The short forms for this feature are View all' and

View select". Elxamples of the long forms are View all bkrpos' and View select bkrpos'.

Again one can switch relations directly by specifying a new relation as the last portion

of the object phrase. The View aJl' option lists all records in the order they were entered

and stored In the relation datallle. The 'view select' operation is an example of the

DBMS using a prompting mode for command input. The View select' option first causes

each field of the relation definition to be sequentially listed. As each field is listed the

user can input the desired matching field criteria or use a '•', the wildcard character, to

indicate no specific matching criteria.

The 'modify' command allows for changing existing records. The command's

short form is 'modify' and its long form is 'modify branch.' The records to be modified

are found based on modification selection criteria. As with the view command, the user

Indicates which fields have specific selection criteria and which fields have no

selection criteria. In a similar manner the user indicates what the new or replacement

data is.

Once the basis for determining which records are subject to modification and

the nature of the replacement data is complete, the user chooses one of the four

modification modes. They cire:

global change with no further prompting;

global change with individual record prompting;

delete records with no prompting;

individual record changes.

In the Individual record change mode the user may use either the standard replacement

data or alter the new data for each record found for modification.

The form of the 'project' command is 'project rl r2'. This function takes relation

rl and 'projects' it into r2. Projecting Involves moving all or selected fields from the

original relation into a new relation. Additionally either all records or only records

meeting specified selection criteria may be passed to the new relation. The 'project'

command automatically takes care of defining the new relation format file. This

command has no short form. A detailed example of using the project command to

determine all open switching devices is provided later in this chapter.

The 'join' command works on two relations to form a new third relation. It too

only has a long form. The command join rl r2 r3' takes relations rl and r2 to form r3.

Like project, all or only selected fields and all or selected records can be passed to the

new relation. The key to the join command is specifying fields and selection criteria

www.manaraa.com

www.manaraa.com

27
which must be common to both the original relations. Using this command simple

relations can be combined into more complex relations. For example, the BRANCH and

BKRPOS relations could be merged into a new relation BRCHOPEN' when needing to

determine those branches which contain open switches. This result is possible because

the BRANCH relation contains the information concerning the relationship between

switches and branches and the BKRPOS relation knows which devices are open.

Performing a logical 'and' on these relations creates the desired new relation. Later In

this chapter this example is examined in detciil.

These data manipulation functions cire the primary features of this DBMS.

Coding Overview

This section concerns aspects of implementing a relational DBMS in Borland

Turbo Prolog on an IBM AT. Key concepts of a relational DBMS include the relational

model and relational manipulation. This section presents the method for storing the

relation in RAM and on disk. How the true-false evaluation of predicates is structured

to achieve program control and thereby direct relational manipulation is discussed.

The last issue presented, relational manipulation methods, concerns trade-offs

between manipulation speed and maximum relation size.

Relation Structure

A relational DBMS views any relation as a table of ordered attributes. Table 6

shows that part of the relation BRANCH which represents substation # 1 as shown In

figure 2.

Table 6. FNF Relation BRANCH to Substation #1
endpolnt. field segment switching device

nsl, subl none
ns?„ subl. none
ns3. subl. none
ns4. subl. none
ns5. subl. none
ns4. LI 14. SD114
ns2. Tl. SDTl
ns3. MSXl, SDMSX
ns5. L115. SD115
nsl. B30. SD30

www.manaraa.com

www.manaraa.com

28
Prolog recognizes a predicate whose arguments all have specific values, a predicate

clause fact, as factual information. For the relation BRANCH the comparative

predicate is:

branch(segment_name, node_name. swltching_devlce_name).

Table 7 lists the information of table 6 expressed as Prolog facts.

Table? . Prolog Clause Facts for Substation #1
branch(endpoint. field segment. switching device)

branchC'nsl". "subl". "none")
branch("ns2". "subl". "none")
branch("ns3". "subl". "none")
branch("ns4". "subl". "none")
branch("ns5". "subl". "none")
branch("ns4". "LI 14". "SD114")
branch("ns2". •Tl". "SDTl")
branch("ns3". "MSXl". "SDMSX")
branch("ns5". "LI 15". "SD115")
branch("nsl". •B30". "SD30")

The prolog predicate "branch' serves as the means for storing the information in the

relation BRANCH. The user sees only the relation's information and not the actual

method of storage. The DBMS uses the dynamic database feature to facilitate

transferring from the table model of the relation to a Prolog model using predicate

clause facts as database records.

For a predicate to be part of the dynamic database it must be declared in the

database declaration section. The declaration requirement presents a problem for a

general purpose DBMS. For specific Prolog applications the predicate

branch(segment_name, node_name. switching_device_name) would be listed within

the database declaration section. This approach is unworkable in a general purpose

DBMS as the relations are unknown to the programmer. The programmer needs a

standard database declaration which will facilitate whatever relations are later

defined. The form of the database records is consistent though. As each record consists

of a set or list of attribute values and is associated with a specific relation name, the

format can be generalized to dbase(relation_name, data_list). This format provides

each database record with the Prolog database predicate 'dbase' and two arguments. The

first, relation name, links the record data to the correct relation. The second, data list,

is a list which contains the attribute values.

Using a list to hold the attribute values solves the problem of being able to

support a random number of attributes in each relation. Because Prolog, during

program execution, dynamically handles list sizing the number of elements in the list

www.manaraa.com

www.manaraa.com

29
is unspecified. However, this version of Prolog doesn't support mixed domain lists. As

such, each element of the data list must be of the same domain. In the database section

of the program code, the predicate is declared as dbase(string. dlist). The argument

'relation name' must be of standard type 'string' and the data list must be of the user

defined type 'dlist.' Since this DBMS considers three data types, string; integer; and

real, the domain tjq^e 'dlist' must accommodate each type. To allow mixed data within

the dlist argument, dlist Is declared as 'a_fleld*', a list of type 'a_fleld.' A_field is

defined as s(strlng) or l(string) or r(strlng). Dlist represents a list of data functored

tokens. The first letter of each functor Indicates the data type it represents cind the

argument the actual information. As the argument to each functor is of type string, the

actual information is converted to string for storage purposes. This arrangement

handles accommodating the relation as database records within RAM.

Database File Structure

As a superset of standard Prolog this version of Prolog supports storing database

information on disk. In storing information on disk Prolog treats each fact clause as a

single term. This results in the whole clause being written or read. Table 8 illustrates

the same information shown In tables 6 and 7 as 'dbase' predicates. Prolog uses the

same format both in RAM and on disk. This format results in a flat ASCII file.

dbaseC'BRANCH
dbase("BRANCH
dbaseC'BRANCH'
dbaseC'BRANCH'
dbaseC'BRANCH
dbaseC'BRANCH
dbaseC'BRANCH'
dbaseC'BRANCH
dbaseC'BRANCH'
dbaseC'BRANCH

Table 8.

",[s("nsl

',lsC'ns2

',[sC'ns3

.[sC'ns4

',(sC'ns5

',Is("ns4

',|s("ns2

',[sC'ns3

'.[sC'nsS

".IsC'nsl

BRANCH Database File Sample
"),sC'subl

"),s("subl

"),sC'subl

"),s("subl

"),s("subl

"),sC'Ll 14

"),sCTl

"),sC'MSXl

"),sC'L115

"),s("B30

"),s("none

"),sC'none

"),s("none

"),s("none

"),s("none

"),sC'SD114

"),sC'SDTl

"),s("SDMSXl
"),srSD115
").sC'SD30

Program Control

Prolog programs operate by evaluating predicates as true or false. This process

of evaluating predicates Is referred to as goal satisfaction. Prolog program operation

centers around goal satisfaction by trying to find a clause where the predicate evaluates

true. Clauses, found in the clause section of the program, can be either rules (LHS IF

RHS.) or facts (LHS with no RHS).

www.manaraa.com

www.manaraa.com

30
For Instance:

A Prolog rule:

bkr_info(Breaker. Position. Rating) if

bkr_position(Breaker, Position) and

bkr_rating(Breaker, Rating).

A Prolog fact:

bkr_infoL. _. 'error').

A goal is satisfied by either finding a predicate fact clause that matches the goal or

satisfying a rule whose LHS is the same as the predicate goal. If the current goal is to

satisfy bkr_lnfo("SD114", Position, Rating). Prolog would first try to satisfy the rule

shown above by satisfying each of the RHS predicates. E^ch RHS predicate is a subgoal

to the current goal. Should Prolog not be able to satisfy any of the RHS predicates, the

rule fails. Prolog does not give up on the goal bkr_info("SD114". Position. Rating) but

rather moves to the next rule or predicate fact clause. In this case the clause

T3kr_tnfoL. _. 'error').' is evaluated. This clause satisfies the goal predicate and returns

the string "error" In the last argument position for the variable 'Rating'.

At program execution the program does nothing until It receives a goal to be

satisfied. This goal can be thought of as the question being asked. This question can be

asked interactively, in the form of an allowed predicate, or can be pre-specified with a

clause In the goal section of the given program. The DBMS uses a goal section clause to

begin the program's execution. The goal section clause indicates the predicate 'menu' is

to be satisfied. The DBMS contains a rule whose LHS is "menu'. This rule is shown in

pseudo-code below:

menu If get user's keyword command phrase Input and

accomplish command task and

if last command Isn't 'quit' and

menu.

The DBMS program then attempts to satisfy the individual predicates which

make up the RHS of the rule. Program direction is achieved through these RHS

predicate subgoals. One RHS predicate solicits the keyword command phrase Input.

Then another RHS predicate serving as a subgoal to the menu rule initiates another rule

to begin completing the user's direction. There is a continuing sequence of RHS

subgoals triggering new rules until whatever command the user gave is completed. Once

www.manaraa.com

www.manaraa.com

31
the original command subgoal Is satisfied the program tries to satisfy the next RHS

predicate of the menu rule. The next predicate check If the last comnicind was to quit.

Assuming the user doesn't want to quit, the clause recursively calls Itself as a subgoal.

In this way program execution continues until the user desires to quit. Should the last

subgoal have been to quit, the RHS clause fails and the menu clause falls. Likewise the

goal clause falls and program execution stops.

Relation Manipulation

Decisions concerning trade offs between speed and maximum database size play

a large role In determining methods for database manipulation. In general, disk

Input/output, i/o, operations reduce execution speed. Not having been able to

implement any sophisticated Indexing method (such as a B-tree Index), bringing the

entire database Into RAM, performing any necessary operations, and writing the

resultant back to disk produces the fastest execution times. With this approach the need

to store the original database, support individual record manipulation, and store the

operation's results, causes available RAM to limit the database size.

For this DBMS, the project and Join commands most relate to this problem. The

approach taken here recognizes the Importance of execution speed and works around

current RAM constraints. Current personal computers running the Micro-Soft Disk

Operating System, MSDOS, find themselves limited to addressing 640K of RAM.

The approach taken involves bringing the entire relation into RAM for

manipulation. RAM space be used efllciently to allow as much space as possible for

storing the existing relation, the result of the relational operation, and to allow for the

necessary code overhead (stack space). Of the addressable 640k RAM the MSDOS,

program code, and program overhead takes about 240K. 400k of RAM remains for

storage of the relation and the results of any relational operation. To make the most of

this space during relational manipulation, records from the original relation(s) are

removed from RAM once they are no longer needed. Similarly, a new relation's records

are written to disk as soon as possible. As such, less space Is needed than if both the

entire old and new files were co-resident in RAM. In addition to having space available

within RAM to store the relation, the stack must be able to handle the overhead

associated with the relational operation.

Stack size Is limited by the MSDOS to 64k. The stack Is used for building

structures, parameter storage, and in program calls, subgoal calls, and recursive calls.

Recursion Involves a rule calling itself. Recursion is used when the number of loops or

operations are not known In advance. While the use of recursion is a convenient

programming technique, it consumes stack resources until the recursion ends. In

www.manaraa.com

www.manaraa.com

32
keeping with the basic concept that Prolog evaluates predicates as true or false, the

stack resources are released only if a calling predicate (goal) is either satisfied

(evaluated true) or falls (evaluated false). The practical result is that all the space

available to the stack, 64k. may be consumed before the relational operation is

completed. This results in a program error and failure. An alternative method of

handling situations where the number of iterations is not known in advance is with the

standard predicate 'fail'.' 'Fall' forces program backtracking to the previous subgoal.

Additionally, when the program retreats to the previous subgoal stack resources are

released. Using the fall predicate in place of recursion allows large relational

operations within the 64k stack space limitation.

In summary, current DOS limits RAM to 640k. Of this the DOS, program code,

and stack overhead takes about 240k. The remainder, 400k, is available for storage of

relations and the results of relational operations. Using the standard predicate 'fall'

allows a 64k stack to handle complex relational operations.

Program Operation and E^zamples

This section demonstrates program operation through the use of three example

DBMS operations. These are:

a global 'modify' of the BRANCH relation to eliminate cill records without

switching devices:

a 'project' action on the BKRPOS relation to create a new relation, BKROPEN,

with only open switching devices:

a 'join' operation on the BKRPOS £ind BRANCH relations to create a new

relation, BRCHOPEN, with only those branches having open switching devices.

Ebcamlnlng how these operations are accomplished wUl Include analysis of key rule

clauses.

The general approach to any of these DBMS operations is to decipher the

keyword phrase command, input additional command directions, read the relation

into RAM, perform the directed operation, and write the new file out to disk.

From the 'menu' rule clause the user's input of 'modify branch' is directed to the

'process-modify' rule clause. As can be seen from figure 6, the argument to the process

predicate is a string list. The list's head, "modify", matches with this rule clause

causing it to be pursued as a subgoal. The relation to be modified. BRANCH, is bound to

the variable TC. The first two RHS predicates take the tail of the command and convert

it to upper case, the proper format for disk access. After erasing any existing relation

www.manaraa.com

www.manaraa.com

33
records and formats In RAM. the "whatls' predicate, by reading the disk based format

file, determines the relation format. The format information includes: the relation

name (BRANCH); a field length list; a field type list; and a field name list.

Modify
process(I"modify" I TCI) if

matchS(TC,Dbl.J.
upper_lower(Db,Dbl)

.

erase_dbU.
erase_fmt(J.
whatls(dformat(Db.L.T.F)).
writeC'Type in selection criteria: \n").

input_fields(dformat(Db.L.T.F).Fl).
wrlteCType in new data format: \n"),

input_fields(dformat(Db.L.T.F).F2).
wrlteC'Indicate type modification: \n").

writeC'global with no prompt —>gn\n").
writef'global with prompt —>gp\n"),

writeC'delete with no prompt ~>dn\n"),
wrlteC'indlvldual changes ~>ip\n"),

readln(C).

concat(Db.".dba".DN).
openread(datafile ,DN)

.

readdevice(datafile).

mod_read(Db,Pf.Fl .F2.C).

save(DN).

Figure 6. Code listing for 'modify' Rule Clause

The code is now ready for specific modify instructions. The rule prompts the

user to indicate, field by field, what the record selection criteria is. That is, how should

the DBMS determine which records are to be modified. The rule then asks the user what

information should be placed In each field of the selected records. If no change is to be

made the wildcard character, *, Is used. Four types of field modifications are supported:

global change without any prompting; global change with individual prompting before

change is effected; global delete without any prompting; and individual record changes.

The first example illustrates a global 'modify' of the BRANCH relation to

eliminate all records without switching devices. The user-DBMS interaction to

accomplish this operation is shown in figure 7, with user responses in bold type. The

user begins the Interaction with the command: 'modify branch.' The DBMS indicates

the user should provide selection criteria. One at a time the DBMS prompts the user

with a field name (along with its type and length). As the values of node and element do

not determine record selection the wildcard character '*' was entered by the user.

Records representing branch elements without switching devices have the value of

'none' in the Via' field. The user's responds with 'none' when the DBMS prompts for via

www.manaraa.com

www.manaraa.com

34
field selection criteria. The record selection responses are combined Into a list and

bound to the variable. Fl.

As the general procedure for the modify operation is to select records and then to

replace field information, the DBMS next prompts for replacement field Information.

This procedure is a program shortcoming in that with the 'delete' option these responses

are unnecessary. Any response by the user will work. The new data format responses

£ire also made into a list and then bound to F2. The type of modification to be

completed, dn (delete with no prompt), is bound to the variable C.

Key Word/Phrase—> modify branch
Type in selection Criteria:

Field Name:node (type= s). MaxLength=8 *

Field Name:element (type= s), MaxLength=10 *

Field Namervla (type=s). MaxLength=10 none
type In new field Information:
Field Name:node (type= s). MaxLength=8 *

Field Name:element (type= s). MaxLength=10 *

Field Name:via (type=s). MaxLength=10 *

Indicate type modification:
global with no prompt ~>gn
global with prompt ~>gp
delete with no prompt ~>dn
individual changes ~>ip
dn

Figure 7. Computer Screen 1

Next the general steps of reading the relation into RAM and making the modifications

are both completed by the predicate 'mod_read(Db.Pf.Fl.F2.C)'. This predicate through

its rules acts as a subgoal the to 'process-modify' rule. These rules are:

mod_read(Db.Pf.Fl.F2.C) if /*Pr is Present Record*/
readterm(dbasedom.dBase(Db.Pf)).
mod_match(Db.Pf.Fl.F2.C).
mod_read(Db.Nf.Fl.F2.C). /*Nr is Next Record V

mod_read(Db) if

eof(datafile).

closefile(datafile)

.

The first of these two rules individually reads relation records Into RAM from the

relation file, calls the predicate 'mod_match' as a subgoal to actually perform the

record modification, and then recursively calls itself to continue the process. When

there are no longer any new relation records to be read in from the datafile. the

'readterm' predicate will fail causing the first 'mod_read' rule to faU. Prolog will then

www.manaraa.com

www.manaraa.com

35
go to the second rule and try to satisfy It. This rule checks that indeed there is a end of

file condition and then closes the dataflle. Once satisfied, the 'mod_read' rule as a

subgoal to its calling rule is satisfied and the program returns to the calling rule.

The "mod.read' rule is an example of not knowing before hand how many

iterations will be required. When possible, the 'fail' predicate, because it doesn't create

large stack demands, should be used to repeat the rule through backtracking. However,

to use this technique the predicates within the rule must be non-deterministic. That Is,

they must be capable of generating multiple solutions through backtracking. As the

'readterm' predicate is not non-deterministic, recursion must be used In lieu of the fall

predicate.

The 'mod_match' rules, figure 8, provide an example of how Prolog determines

which rule to invoke. The argument variables to mod_match are: the relation name.

Db; the current record being considered, Pf; the selection criteria, Fl; the new format

criteria. F2; and the tjrpe of operation. C.

mod_match(Db.Pf.Fl.F2,C), if

not(match(Fl,Pf)),
assertz(dBase(Db,Pf)).

mod_match(_,_,_,_."dn").

mod_match(Db,Pf,_.F2,"gn") if

mod_change(Pf,F2,F4),
assertz(dBase(Db,F4)).

mod_match(Db,Pf,_.F2,"gp") if

clearwlndow.
mod_change(Pf,F2,F4).
wrlteC'Change top record to bottom? (y/n)\n "),

wrlte_data(Pf) ,wrlte_data(F4)

,

readdevice{keyboard),readln(C),readdevice(datafile).

mod_act(Db,C.Pf,F4).

mod_match(Db.Pf.Fl,F2."lp") if

clearwlndow,
mod_change(Pf,F2,F4).
wrlteC'Change top record to bottom? (y/n)\n "),

wrlte_data(Pf) ,write_data{F4)

,

readdevlce(keyboard) ,readln(C) ,readdevlce(datafile)

,

mod_act(Db,C,[l,F4).

mod_match(_._,_,_,_).

Figure 8. Listing for "mod.match* Rule Clause

Prolog begins with the first rule and checks if it can be satisfied. As the arguments to

the first rule are all variables, the passed variables bind to the LHS variables and the

www.manaraa.com

www.manaraa.com

36
rule will be satisfied If the RHS predicates are satisfied. The 'match' predicate checks

whether the record being considered matches the selection criteria. Because of the 'not'

modifying this predicate, it will only succeed when they do not match. This condition

indicates that the record falls to meet the selection criteria and it is asserted Into RAM

unmodified. If this version of the rule succeeds, is satisfied, control returns to

"mod.read' for the next relation record. Should the record and the selection criteria

match, the 'not' modifier would cause the predicate and likewise this version of the

'mod_match' rule to fail.

When one version of a predicate's rule fails, Prolog moves to the next listed rule.

In the second version of these rules, instead of normal variables the first four

arguments are the anonymous variable '_' which can be bound (and satisfied) by

anything. This is used when the values of these cirguments do not matter in the logic of

the rule. The last argument of this rule instead of having a variable has the string "dn

"

shown. To bind to this argument the calling predicate's argument must be the same, i.e.

"dn". As the first four arguments contain the anonymous variable, to satisfy the LHS of

this rule the calling predicate need only match the last argument with the string "dn".

Note that this rule has no RHS. Simply matching the last argument to "dn" satisfies the

rule.

The general form of the LHS of the 'mod_match' rules is to pass any necessary

information through the first four arguments and the operation to be performed

through the last argument. The RHS of the rules performs the necessary operation and

asserts the new record into RAM. In the case of the 'delete' operation, the necessary

operation is to delete the record, i.e. not assert it into RAM. This rule therefore needs no

RHS.

After all the records have been processed the revised relation resides in RAM.

Control returns to the 'process-modify' rule where the last RHS predicate writes the

relation to disk. The example relation, BRANCH, was a 28,000 character file with 434

records. The DBMS took 5 seconds to read and examine each BRANCH record, identify

193 records containing the value "none" in the via field, assert the other 335 records

into RAM, and save the modified relation to disk.

The keyword phrase 'project bkrpos bkropen' activates the 'process-project' rule

clause, figure 9. The desired effect of this operation is to generate a new relation,

BKROPEN, consisting of all the BKRPOS records which have the value of "open" in the

position field. Figure 1 1 shows the user-DBMS Interaction required to direct this

operation. Note that the computer prompts the user for 'JOIN' field information. This

message is a result of the project command sharing code with the join command.

www.manaraa.com

www.manaraa.com

37
Project
process(l"project" I TCJ) If

clearwlndow,cursor(0,0)

.

matchS(TC.Db 1 1,TC 1) .matchS(TC 1 .DbNewl.J

.

upper_lower(DBNew,DbNewl)

.

upper_lower(Db 1 .Db 1 1),

wrt_fld_names(Db 1)

.

M= 1 .joln_nds(Db 1 .M.TN 1 .TVl).
echo(Dbl.TNl,TVl),
posiUons(Db 1 .TN 1 .TP 1 .TTl .TL 1)

.

DbClauses(Db 1 ,TP 1 .TV 1)

.

nextstep("n".DbNew.TL 1 .TTl ,TN 1)

.

mkNew(Dbl,"".DbNew.J.
writeC'ProJect complete. Hit return to continue.").

readlnL).
Figure 9. Listing for 'project' Rule Clause

VaUd BKRPOS fields:

via position
Indicate JOIN field #1: via
Indicate selection Value (•=wildcard): *

Indicate JOIN field #2: position
Indicate selection Value (*=wlldcard): open
Indicate JOIN field #3:

Selected criteria fi-om dbase BKRPOS:
via •

position open

Project complete. Hit return to continue.

Figure 10. Computer Screen 2

Similar to the 'process-modiiy' operation, the DBMS prompts the user for responses. In

this case the DBMS shows the available (valid) fields for the project operation. The

project command allows the user to create a new relation with any or all ofl" the

attribute fields of the original relation. The order in which the user gives the field

attribute names to the DBMS will be the order the attributes will appear in the new

relation. The user also may indicate a selection criteria for each field to be Included in

the new relation. Figure 10 shows that no selection criteria should be used with the Via'

field values but that only records with 'position' field values of 'open' will be included in

the new relation. The DBMS continues to ask for field Information until the user

responds with only the return key. After the user completes the selection process, the

DBMS echo prints the selected fields £ind the values for each field.

The first new RHS predicate in this rule is the 'positions' predicate. This

predicate takes the list of selected fields for the new relation and extracts the necessary

www.manaraa.com

www.manaraa.com

38
format information: field names; field lengths; and field types from the original

relation format file. The rules associated with the predicate 'DbClauses' reads into

RAM the entire original relation, finds those records which meet the selection criteria

(via field value of "open"), and asserts into RAM the new relation's records.

The relation records which meet the selection criteria need to be 'conditioned'

prior to becoming records for the new relation. In the case where not all fields of the

original relation are used in the new relation, this conditioning Includes extracting the

appropriate field information and discarding the undesired field's data. Next the data

is reordered as indicated by the ordering the user gave in the criteria selection process.

Lastly, before asserting the data as a new record, the data is verified as non-redundant

(non-duphcate).

The predicate 'nextstep' creates a format file for the new relation and an empty

datafile for the relation. The predicate 'mknew', by writing the new relation to the

datafile, completes the 'process-project' rule. The 'mknew' rules illustrate backtracking

by use of the fail predicate. The pertinent 'mknew' rules are:

mknew(Dbl,"".DbNew,J if

concat(DbNew,".dba",DName),
openappend(datafile,DName)

.

writedevice (datafile).

dBase(Dbl.Fdl),
write_terms(dBase(DbNew,Fd 1))

,

retract(dBase(Db 1 .Fd 1))

,

fail.

mknew(Dbl,"",DbNew,J If

closefile(datafile)

,

writedevice(screen).

The program goes through the first rule until it hits the 'fall'. The 'fail' predicate always

falls and causes the program to backtrack to the first non-deterministic predicate

seeking an alternative solution from that, the non-deterministic, predicate. In this

case, the only non-determlnlstic predicate is the 'dBase' predicate, the dynamic

database predicate. It finds the next relation record. After the dBase predicate succeeds,

having found a new relation record, the predicates following it are repeated. The

process of finding a relation record and writing it to the datafile is repeated until the

dBase predicate falls, i.e. there are no more relation records. At this point this mknew

rule falls and Prolog moves to the next mknew rule. As can be seen, the next rule closes

the datafile and returns output to the screen.

The source relation. BKRPOS, was a 1 1,500 character file with 250 records. The

DBMS took 33 seconds to read in the records, delete 181 records not containing the

www.manaraa.com

www.manaraa.com

39
vedue "open" In the via field, create 69 new records in RAM, create the new format file

and empty dataflle. and write the records to the BKROPEN dataflle.

The final example Illustrates the join' operation. The Join operation takes

advantage of the DBMS using the relational model. By using a relational model.

Individual relations can easily be joined to form more complex relations through

common attributes. The join operation takes two relations and forms a third. The two

original relations must have one or more common attributes. Any number of the

common attributes can be used in specifying the join operation. Consider the command

'join branch bkrpos brchopen'. The relations BRANCH and BKRPOS act as source

relations. The newly created relation will be BRCHOPEN. This command takes the

program to the 'process-join' rule, figure 11. Figure 12 shows the additional specific

command direction required to accomplish this operation.

As with the 'process-project' rule, the user is prompted with the first relation's

attributes and a request for the first 'JOIN' field. Join fields must be common between

the two relations. The selection vsilue specified will determine which records are

joined. In this example, records with common 'via' field values will be joined. The user

hits the return key when no further join' fields are needed.

Join
process(['join"ITCl) if

clearwindow. cursor(0,0).

matchS(TC.Dbll.TCl).matchS(TCl.Db21,TC2).matchS(TC2,DbNewl,J,
upper_lower(DBNew,DbNewl),
upper_lower(Db 1 ,Db 1 1)

,

upper_lower(Db2,Db21).
wrt_fld_names(Db 1)

,

M=l,joIn_flds(Dbl,M,JNl,JVl),nu_nds(NuKey,JNl),nl.
N=l,othr_flds(Dbl.N,ONl,OVl).
joinlIstS(JNl,ONl.TNl),

joInlistD (JV 1 .OV 1 .TV 1)

.

echo(Dbl.TNl,TVl).
wrt_fld_names(Db2)

.

L= 1 .othr_fIds(Db2.L.ON2 .OV2)

,

joInlistS(JNl .ON2.TN2), joinlistD(JVl,OV2,TV2).
echo(Db2,TN2,TV2).
joinlistS(TN1.0N2.TNnew).
joinlistD(TVl .OV2,TVnew).
echo(DbNew.TNnew.TVnew)

.

positions(Db 1 .TN 1 .TPl .TTl .TLl).

posItions(Db2 .TN2 .TP2 .TT2 ,TL2)

.

DbClauses(Dbl.TPl,TVl),write("lst clauses complete") ,nl,

DbClauses(Db2.TP2.TV2).write("2nd clauses complete"). nl.

mkfmt(DbNew.NuKey.TN 1 .TTl .TLl .TN2.TT2.TL2),
mkNew(Db 1 ,Db2,DbNew,NuKey)

.

wrlte("Join complete. Hit return to continue.").

readln(_).

Figure 11. listing for 'Join' Rule Clause

www.manaraa.com

www.manaraa.com

40
In addition to the information concerning the Join field(s). the DBMS needs to

know what 'other' fields from the first source relation will contribute to the new

relation. Also for the other fields indicated, by specifying specific field values only

those records qualifying (meeting the selection criteria) will move to the new relation.

From the computer screen, the field 'element' with the wildcard selection value wHl

cause the 'element' field to be included in the new relation without any selection process

on the value of the field. The remaining field of the BRANCH relation, node, isn't used.

For the second source relation, BKRPOS. no join field information is required.

That is because the join information will be the same for both source relations. The

DBMS proceeds directly to soliciting Information

Valid BRANCH fields:

node element via

Indicate JOIN field #1: via
Indicate selection Value (*=wlldcard): *

Indicate JOIN field #2:

Indicate other field # 1 : element
Indicate selection Value (*=wildcard): *

Indicate other field #2:

Selected criteria from dbase BRANCH:
via *

element *

VaUd BKRPOS fields:

via position
Indicate other field # 1 : position
Indicate selection Value (*=wildcard): open
Indicate other field #2:

Selected criteria from dbase BKRPOS:
via *

position open

Selected criteria from dbase BRCHOPEN:
via *

element *

position open

Join complete. Hit return to continue.

Figure 12. Computer Screen 3

concerning the other fields to be included tn the new relation. From the computer

screen dicilog, the field 'position' is selected with a field value of "open". Again Uke the

'project' command, the selected criteria for the new relation. BRCHOPEN. is echo

printed.

Table 9 shows selected relation records from the two source relations and one

resultant record. The first record shows the field names. Shown in bold print is the via

www.manaraa.com

www.manaraa.com

41
field value. sdmhS, which matches between the shown BRANCH and BKF?POS records.

Since the via attribute has been specified as the Join field these two records cire

candidates to be joined together. Since for the 'position' field from the BKRPOS relation

was specified as "open" the candidate BKRPOS record must also have the value of "open"

In Its 'position' field. It does. The last record In the table Is the resultant record. The

first element of the data list Is the via field value of "sdmhS". The second member of the

list. "bmhS". Is the value of the 'element' field of the BRANCH relation record. The last

member of the new record, "open". Is taken from the position field of the BKRPOS

record.

Tables. Selected Relation Recofds
dbaser'BRANCH".[node field. element field, via field D

dbase("BRANCH".Is("n2.39 ").s("bmh8 ").s("8dinh8 ")))

dbase("BRANCH".(s("n2.39 ").sf'bl014 ").s("sdl014c ")])

dbase("BRANCH".|s("n2.39 "j.sT'blOlS ").s("sdl015c ")])

dbase("BKRPOS".|vIa field. posiUon field])

dbaseCBKRPOS".(s("sd313 ").s("closed")l)

dbase("BKRPOS".Is("sdt31 ").s("closed")])

dbase("BKRPOS".[s("sdinh8b ").s("open ")])

dbaseC'BRCHOPEN". [via field. element field. position fleldl)

dbase{ "BRCHOPEN".[s('8dmh8b ").s("bmh8 ").s("open")

The RHS predicates of the of the 'process-join' rule are similar to the 'process-

project' rule. The DbClauses predicate is used twice. That allows Inserting Into RAM the

candidate records from each of the source relations. The 'mkNew' predicate assumes

additional responsibilities within the 'process-join' rule. The 'mkNew' rule matches

appropriate candidate records and combines them to form the new record. After

forming the new record. It verifies that It Isn't a duplicate record, asserts the record into

RAM. writes the record to the datafile. and fails In order to repeat the process.

In this example operation, the relation BRANCH was a 28.000 character file

with 434 records, the BKRPOS relation was a 1 1.500 character file with 250 records.

The resultant relation, BRCHOPEN. has 4500 characters and 69 records. This join

example took 5.75 minutes to complete. This result is definitely not fast. E^ch of the

previous examples where originally run on an IBM AT with a hard disk storing the

datafiles. To see how much of the execution time was attributable to disk i/o the project

and join examples were repeated with the datafiles stored on a RAM disk. The observed

times using a RAM disk were only 1-5 seconds faster than the times observed when the

datafiles were stored on a hard disk. The time Improvement Is so small because hard

disks are fast and the DBMS rules limit disk I/o in the project command to two. one

read for the source relation and one write to save the new relation, and In the join

www.manaraa.com

www.manaraa.com

42
command to three, two reads for the two source relations and one write to save the new

relation.

DBMS Concluding Remarks

This chapter provided an overview of implementing a relational model DBMS

in Prolog. This included a brief discussion of DBMS functions, examples of relational

operations, and design and programming consideration influenced by the Prolog on an

IBM AT environment. From the previous discussions one can see the power of a DBMS

as a data management tool. The use of a relational model stated in FNF further

enhances a DBMS's capabilities. These features motivate its use as a supplement to an

ES.

The time required to perform the relational operations is judged as marginal at

best. Since the execution times did not Improve when using a RAM disk to store the

datafiles, the execution time is dependent on the DBMS rule coding. This result reflects

the lack of a indexing scheme to rapidly retrieve and match database records.

www.manaraa.com

www.manaraa.com

Chapter IIL The Expert System

Expert System Introduction

This chapter demonstrates the ES and validates its use as a distribution system

engineering aid. The ES's goal and basis are briefly reviewed. Preliminary comments

consist of a brief characterization of the system model and a description of the three

cl£isses of problems considered by the ES. This project proposes that the ES and DBMS

be jointly used as an off-line engineering aid. For each class of problems,

demonstration and validation consists of three principle steps. The first step describes

the nature of the given class of problems. Second, examples demonstrate how to present

the problems to the E^ and how the E^ responds. The last step addresses the

methodology for solving that class of problems.

I

ES Goal Statement

The goal of the ES and DBMS package is to provide users with an off-line tool for

analyzing problems concerning system connectivity. This goal fulfills the dominant

need of those managing the Bangor Submarine Base distribution system which is being

able to analyze ways of configuring the system to mgiintaln service to loads.

Connectivity

Connectivity refers to the paths used for transferring power from sources to

loads. From the DBMS, three relations model the distribution system. The first, the

BRANCH relation, represents the system topology as a set of connected branch

elements. Each relation entry consists of a branch node/element pair and a switching

device. The node establishes the connection points between branches. The switching

device controls power flow through the element. The second relation. BKRPOS. stores

switch position information. The switching devices may be either open or closed. The

third relation. BDESC. categorizes elements as either sources, loads, or lines. In the

natural sense, sources provide power, loads consume power, and lines transmit power.

The description 'line' Is used for distribution lines, transformers, any other

miscellaneous components which do not provide or use power. The ES. using the

www.manaraa.com

www.manaraa.com

44
information from these relations, examines connectivity, i.e. how power is or could be

transferred from sources to loads.

Three general classes of connectivity problems £ire considered. First, initial

system analysis determines the condition of the distribution system based on the

distribution system database information. The analysis includes which loads are

energized, the branch elements which make up the power flow paths for each loads, and

a determination of all energized line elements. The second class of problems concern

how the distribution system condition changes as a result of single elements being

taken out of sendee. The elements considered are switching devices as well as the three

branch element types—sources, lines, and loads. For loads and lines, taking the

element out of service assumes a short circuit fault requiring the opening of switching

devices to isolate the fault. For switching devices, removing from service means either

a user opening a switch or the switch falls and opens. For these situations the E^

determines which loads become de-energized, the closest switching devices to isolate

the fault, cind what lines become de-energized as a result of isolating the fault For fault

isolation, the ES does not consider if switching devices operate automatically or

manually. The ES determines which switches must be opened to minimize the affected

fault area. Third, the ES determines alternative paths for restoring de-energized loads.

Finding a restoration path requires determining routes over currently unenerglzed

lines, but not out-of-service lines, to currently energized lines. The ES does not provide

a sequence of switch operations to realize the restoration paths but does indicate what

switching devices need to be closed.

Initial System Analsrsis

Problem Nature. Initial system analysis determines the path(s) energizing each

load and identifies the energized distribution lines. To accomplish this, the ES must

link with the DBMS to receive the information in the distribution system database.

The database consists of three DBMS relations-BRANCH. BDESC. and BKRPOS. The

ES uses a single relation, BINFO. BINFO. which stands for "branch Information' has the

following form:

(node, branch element->type. switching device, position).

Using the BINFO relation, the 'type' attribute identifies sub-stations and generators as

sources. Sources provide power to loads through the distribution lines. To energize a

load a continuous path, a loadpath. must exist between a source and the load. To

determine how a load is energized the ES starts at the load and Investigates all possible

www.manaraa.com

www.manaraa.com

45
paths leading from it. In this way the Initial analysis determines every path, branch by

branch, which leads from a load to a soiorce. Normally only one such path exists. As

there may be energized branches which are not part of any loadpath determining

loadpaths to the loads is not sufficient to determine all the energized branches.

To determine energized distribution lines the ES starts at each source and works

outward. Any line connected to the source itself or an energized line is energized.

Reaching these conclusions involves applying the ES's rules to the Information

contained in the distribution system database.

Alternative initial system configurations can also be analyzed. While

remaining in the ES, the user can directly enter the DBMS program to change the

position of the switching devices to reflect another system configuration. Upon

completion of the DBMS operations, ES program execution resumes. The user can then

perform an initial system cinalysis using the modified distribution database. In

addition to analyzing the system with different switching device configurations,

different line arrangements, i.e. topologies, can be investigated. To determine the effect

of removing lines, records are deleted from the DBMS's BRANCH relation. Without

entries in the BRANCH relation the lines do not affect the system's topology. Similarly,

to determine the effects of new lines, records are added in the BRANCH, BDEISC, and

BKRPOS relations. Entries must be made in each relation to fully describe the nature of

the new lines. Using the DBMS to modify the database relations allows the ES to

analyze the current system topology with alternative switching positions or system

configurations based on modified topologies.

User/ES Interaction. The ES, like the DBMS, uses natural language querying.

The command paths' invokes the relation preparation program. The relation

preparation program loads into RAM, prepares the relation BINFO, and then the ES

resumes. Upon resumption the ES reads into working memory the relation BINFO, and

begins determining the loadpaths. The ES responds to the user by indicating which

load is being considered. Each loadpath found for that load is displayed. When the ES

determines there are no additional loadpaths for the load it finds another load to

analyze. This loop continues until all loads have been completed. These loadpaths are

asserted as djoiamlc database facts into working memory.

The command 'energized' starts the ES finding energized lines. Any line

connected directly to or through other energized lines to a source is an energized line.

As the ES determines a line is energized it displays this conclusion to ttie user and

asserts this new fact into working memory.

www.manaraa.com

www.manaraa.com

46
Methodology. The methodology for finding all loadpaths Involves three steps.

First, Invoking the relation preparation program and reading into working memory

the resulting BINFO database. Second, finding a load not already evaluated. Third,

finding that load's loadpath(s). The second and third steps are repeated until no further

loads require Investigation.

The ES begins by first calling a relation preparation program. This preparation

program links to the ES the distribution system database Information stored in the

DBMS as three relations. They are:

BRANCH: (node, branch element->vla),

BDE^SC: (branch element->type,rating),

BKRPOS: (via->posltion).

The relation preparation program Joins the three relations into a single relation,

BINFO, of the form:

(node, branch element->type, switching device, position).

This preparation program is equivalent to the DBMS performing three relational

operations—two joins and a project. The first DBMS Join operation Joins the relations

BRANCH and BDESC using the common attribute "branch element.' As the ES does not

need to know about branch element ratings, this attribute is not included in the new

relation, TEMPI. TEMPI has the following form:

TEMPI: (branch element, node->vla. type).

The second Join operation Joins the BKFIPOS and TEMPI relations using the common

attribute Via.' The form of resulting relation, TEMP2, is:

TEMP2: (via, position, node, branch element.type).

While the required information Is In a single relation, the ordering of the attributes is

not what the E^ requires. The DBMS would next have to perform a project to reorder

the attributes as required by BINFO. The "via' attribute ofTEMP2 and the 'switching

device' attribute are the same attribute with different labels.

In addition to forming a correctly ordered single relation, the DBMS and ES

handle the information in a different format. To Illustrate, one record of TEMP2 is:

dbase('TEMP2",ls("sdmh8 "),s("open '•).s("n2.33 ").s("bmh8 ").s('load ")]).

One record of BINFO, In the ES, Is:

bInfo("n2.33","bhm8","load"."sdmh8","open").

www.manaraa.com

www.manaraa.com

47
The difference arises from the need of the DBMS to use a generalized data storage

format whereas the ES, as a specific application, can use a specific predicate format.

The link between the DBMS and ES must also perform this format change.

To perform these operations several alternatives existed. The DBMS could be

used to perform the two 'Joins' and a 'project' to create a BINFO relation In Its

generalized format. A special format conversion routine could then perform the

required conversion. Similarly, the appropriate routines from the DBMS and the

conversion routine could be Incorporated in the ES itself. This alternative would save

having to Invoke the DBMS and enter the commands manually. The acceptability of

the progrcim size Increase would depend on the ability of the remaining RAM to handle

the relational operations. A third alternative approach was to perform the format

conversion and the relation combinations with routines written for these specific Join

operations. These routines could also exist as a stand alone program or as part of the

ES.

Two of these approaches were examined. The indicated relational operations

were performed by the DBMS and a stand alone relation preparation program. The

results of the DBMS operations follow:

Join branch bdesc temp 1

:

9.75 minutes;

Join bkrpos tempi temp2: 1 1.2 minutes:

project temp2 blnfo: 3.0 minutes:

total: 23.95 minutes.

These same operations using RAM disk Instead of a hard disk were 13 seconds faster.

Due to the excessive time required for these three operations, the format conversion

routine was not developed. The stand alone BINFO relation preparation program took

1.75 minutes to read the three relations, perform the format conversions, form the new

relation, and store the new relation on a hard disk. As neither of these approaches used

sophisticated data look-up methods, the time Improvement Is attributed to using

routines for specific relation operations rather than generalized operation routines.

This project Implemented the DBMS-ES Information link as a stand alone

relation preparation program. The preparation routines were not included in the ES

program code because one, their Inclusion would Increase ES code size without ofifering

a significant speed Improvement and two. these operations were felt to be more DBMS

related than ES related.

Once the relation preparation program prepares the BINFO database, the ES

places it in working memory as a dynamic database. The ES next Identifies which

^rstem elements are loads and then determines their loadpaths. The goal

www.manaraa.com

www.manaraa.com

48
blnfo(Node,Branch."load".Swltch.Positlon) finds a branch which is a load. Once a load

has been identified, the ES traces all connected paths from the load. Any path which

ends at a source is a loadpath. The loadpath is then asserted into working memory.

Paths which terminate at open switching devices or other loads are not loadpaths.

These loadpaths are developed using two rules. Shown in pseudo-code:

rule 1:

Make the current branch the end of the loadpath list if

the branch is a source.

rule 2:

Add the current branch to the loadpath list if

its switching device is closed and (1)

the node/branch pair hasn't been considered and (2)

there is another branch. branch2, connected to branch (3)

whose switching device is closed and (4)

node/branch2 hasn't already been considered and (5)

it leads to a source. (6)

The first rule recognizes that a source branch completes a loadpath. The second rule

builds the list of branches leading to the source. Line (1) recognizes that to be part of the

loadpath the branch's switching device must be closed. Line (2) ensures that only paths

not previously checked are pursued. The last condition necessary to add this branch to

the loadpath list is that it be connected to another branch which leads to a source. Lines

(3) through line (6) checks this. Line (6) is a recursive call back to these two rules.

Finding the loadpath for B5730 illustrates the action of these two rules. The

part of the system dealing with this search is shown in figure 13. The ES, using these

two rules, finds the loadpath(s) for B5730. Rule 1 checks if B5730 is a source. The

database clause binfo("nl.l0"."b5730","load","sd5730","closed") identifies this branch

as a load and so the rule fails. The second rule also examines this predicate clause.

Since the 'position' attribute indicates the switch to B5730 is closed the ES should

follow this path. The closed switching device causes first line to evaluate true. Because

this branch has not been previously considered the second line of the right hand side

(rhs) evaluates true. Line (3) looks for a branch which is connected to this branch. To be

connected to the current brgmch the new brgmch must share the node nl . 10. From the

figure that would be branch LI 14f. The database clause

binfo("nl.lO"."L114f',"llne","none","closed") tells the ES that this branch element's

switching device is closed. Line (5) is satisfied as this new branch has not been

previously considered.

www.manaraa.com

www.manaraa.com

49
To check If node/branch 'nl.lO/Ll 14f leads to a source the rule recursively

calls Itself with the current branch becoming 'LI 14f . Rule 1 again falls. Rule 2 Is now

checking branch L114f. This time line (1) finds

binfo("nl.8"."L114f."llne"."sdL114f'."closed") which Is the other node/branch

combination sharing the branch LI 14f. Rule 2 checks that this node/branch pair has

not been considered previously. With this combination of rules finding node/branch

pairs with closed switching devices the ES can move from node to node and from

branch to branch. Line (3) now looks for a branch which is connected to node nl.8.

From the drawing, LI 14y. LI 14x, and LI 14g all connect to this node. If the ES selects

LI 14g it will continue the previous process until it runs into a dead end at B5065. The

ES backtracks to nl.8 and then may select LI 14x. The previous process again continues

until reaching blnfo("nl.l2", "Lsp Id", "line"."sdlm","open"). This branch falls because

the switching device is open. The ES again backtracks to nl.8. This time the only

remaining untried path is LI 14y. Depending on how the "binfo' predicate clauses are

arranged in working memory the ES may follow other faulty paths or go directly to

subl through sdLl 14. Once subl is the branch being considered,

blnfo("ns3"."subl"."source"."none"."closed") will allow rule 1 to succeed. The list [b5730.

L114f. LI 14y. LI 14z. subl] is saved in working memory as loadpath("b5730". [LI 14f.

LI 14y, LI 14z, subl]). The first sirgument of the loadpath predicate Is the load's name.

The loadpath list is the second argument to the predicate. After determining one

loadpath the ES backtracks through each node investigating all possible paths from

that node. For this example, each path eventually leads to an open switch or another

load. Therefore B5730 has only a single loadpath.

After all possible routes have been checked, the ES selects another load and

reapplies these two rules. This continues until all loads have been worked. Having

completed the 'paths' command the ES returns to the user prompt to await the next

direction.

www.manaraa.com

www.manaraa.com

5

/\
L114F

Nl.lO

B5730

^

L114Z

L114Y

N1.8

L114G

L114X

B5065

"n
L114W

6 L5

SUBl

N1.12

SD IM Position is OPEN

LSPID

Figure 13. System Extract for B5730 Loadpath

www.manaraa.com

www.manaraa.com

51
The second part of Initial system analysis consists of determining energized

distribution lines. Rules similar to the loadpath rules find the energized lines.

rule 3 /• considers branches which are sources*/

node/branch is evaluated if

branch is a source and (1)

node/branch not previously considered and (2)

place in working memory as energized and (3)

find another branch, branch2, to consider which (4)

Is connected to this node with a closed switch and (5)

has not previously been considered and (6)

evaluate the node/branch2. (7)

rule 4 /'considers lines with closed breakers at each end*/

node/branch is evaluated if

node/branch not previously considered and (8)

place in working memory as cin energized line and (9)

find other node. node2. for branch and (10)

switch for node2/branch is closed and (11)

find another line branch, branch2, to consider which (12)

is connected to this node2 with a closed switch and (13)

has not previously been considered and (14)

evaluate the node2/branch2. (15)

The search for energized branches involves transversing through closed switches the

tree made up of interconnected source and line branches. Any such tree begins at a

source branch and expands out over line branches until an open switch or a load are

encountered. The 'energized' command begins a tree by finding a branch which is a

source. For example, the following predicate clauses represent the branch elements

which make up subl:

binfoC'nsl", "subl "."source". "none"."closed"):

binfo("ns2". "subl". "source", "none". "closed");

binfo("ns3". "subl". "source", "none". "closed");

binfo("ns4". "subl". "source", "none". "closed");

binfo("ns5". "subl"." source", "none". "closed").

Rule 3 handles these type clauses. Any one of these clauses can act as the starting point

for the ES. Lines 4-6 begin the tree search by finding a previously untraversed

cormecting branch with a closed switch. Rule 4 line (8) checks that the new

node/branch pair have not been previously checked. This rule always evaluates true

www.manaraa.com

www.manaraa.com

52
when expanding the txee. It Is placed as the first rule to promote fast backtracking when

the rule fails. Line (9) asserts into working memory that the new branch is energized.

Line (10) finds the other node associated with the current branch. Line (11) checks if the

switch associated with this node is closed. If it is. the rule looks for another line branch

with a closed switch to expand the tree onto. If the switch associated with the second

node is open the rule fails. This rule causes the tree to expand along a path until it

reaches either a load, a source, or an open switch. The rule then fails and backtracks to

an unexplored line branch. When the entire tree is explored rule 2 backtracks to rule 1

£ind another source branch Is found. The new source branch begins a new tree. This

process continues until all source branches have been tested.

At this point the ES has completed the initial system analysis. Working

memory contains the original BINFO system database, the derived loadpath clauses,

and the energized line clauses. The ES is now ready to respond to the effects of opening

circuit breakers, single element faults, and restoring de-energized loads. Additionally,

the contents of working memory can be saved to disk for later use. The 'save' command

saves all database clauses to disk. These can later be read directly into working

memory by the 'consult' command. When Prolog saves dynamic database clauses to

disk, all clauses of every type are saved in one file. While this project did not do so, a

relation preparation program could be developed to convert the Individual clauses into

separate relations of the general format required by the DBMS.

These two ES operations, finding the loadpaths and the energized distribution

lines, are the most computationally intensive. They involve first reading from disk the

44 1 BINFO relation records Into working memory. E^^ery possible path from each load

is investigated to see if it leads to a source. From each source every branch is examined

to determine If it is an energized line. The process to determine all loadpaths takes 40

seconds to complete. The process of determining energized branches 58 seconds.

Several versions of the rules for determining energized paths were examined. While

each version of the rule produced the same results their performance varied by 230%.

The time Improvements resulted from using the fall command instead of recursion

when possible and by reordering RHS subgoals. The time differences illustrate that

optimized performance results from efilcient tree searches and efficient backtracking.

The performance and accuracy of the ES in this task cajinot be duplicated by even the

most proficient user of the distribution system.

www.manaraa.com

www.manaraa.com

53
Single Element Failure

Problem Nature. The ES handles the distribution system's two most common

single element failures. These are a switching device failing open and a brsmch element

shorting. These are the type situations for which the oflf-line users need the E^S to

analyze as 'what-if problems.

The switching device failure results in the switching device being left open

without the ability to reclose it. The ES must determine the effects of interrupting

power flow through the branch served by that switch. Interrupting power through a

branch may cause loss of power to loads and de-energize distribution lines. The ES

must also identify the switch as being out of commission (ooc). By noting that the

switch is ooc the ES knows the switch is no longer available for use. The ES also accepts

an 'open switch' command. The only difference between opening a switch and a switch

failing open is that the former isn't labeled as being ooc.

The ES also considers the results of a branch element faulting as a short. Any

branch element—a source, load, or line—can be shorted. When a short occurs the ES

must determine which circuit breakers open, what lines are de-energized, and which

loads are de-energized. In this case the opened circuit breakers are classified as 'lost.'

Their use as switching devices are lost because they must remain open to Isolate the

fault

.

User/ES Interaction. Before beginning a "what-if simulation, the ES must

complete an initial system analysis or have loaded into memory, using the consult

command, the results of a previous analysis.

The first of the two types of single element failures is the opening of a switching

device. The user gives the command 'open swltchname' to indicate simply opening the

switch. The command 'ooc swltchname' indicates the breaker opens and is out of

commission. When opening a switch or breaker the ES first checks the device's current

position, ff it is already open the user is so notified, ff it is closed, its position is

changed to open cind the user is notified what branch it controlled power flow through.

Once the ES has determined which branch had power flow interrupted it can determine

the results of the interruption. As the E^ identifies de-energized loads the user is

notified. Their status is also chcinged to de-energized loads in working memory.

Distribution lines which become de-energized are removed from working memory.

The other type failure is a branch element shorting. When dealing with a

shorted branch element the E^ must first find the area necessary to Isolate the short.

The ES determines the boundaries of this area by checking all paths leading from the

www.manaraa.com

www.manaraa.com

54
fault. For each path the ES finds the closest switching device which can isolate the fault

fit)m the remainder of the S)^tem. The ES notifies the user which switches need to be

opened. The E^ knows that, in addition to isolating the fault, opening a switch

interrupts power through that switch's branch. By knowing which branches have had

power interrupted the ES can determine which loads are lost in isolating the fault. This

information is all reported to the user. The final step of fault analysis is redetermining

the energized lines using the method previously discussed

At this point working memory contains the original system information in the

relation predicate clauses, the derived loadpath clauses, and the energized line clauses,

what switch devices are ooc. and what switches have been opened to isolate faults and

therefore cannot be reclosed. and which loads have been lost due to the single element

fault. Using the 'save testname' command transfers a copy of the working memory's

information to disk. This command creates a new datafile on the hard disk. As with

initial system conditions saved to disk, this S3^tem condition can later be recalled with

the command 'consult testname.'

The user may also study the effects of multiple faults. Multiple faults and switch

openings can be simulated by a sequence of single element faults and switch openings.

Methodology. The methodology for handling the eflFects of opening a switch and

a switch faulting open are similar. The only difference in these two situations is that

the faulted switch needs to be identified in working memory as ooc. This identification

is accomplished by asserting the predicate ooc(switch_name) into working memory.

The actual opening of a switch produces straight forward results. If it was already open

the ES merely notifies the user cind returns to the prompt mode. If not. the E^ changes

its position in working memory by retracting the binfo clause with a 'closed' position

value and asserting a binfo clause with an 'open' position value. Next the ES determines

what the switch controlled power through or to. Each switching device directly controls

power flow in a single system element. As sm example of opening a load breaker

consider the system portion serving Quarters Group 7 shown in figure 14.

1216f

1216g

1215d

1215e

Figure 14. System Portion Serving Quarters Group 7

www.manaraa.com

www.manaraa.com

55
The user gives the command 'ooc sdq7'. From binfo("n2.20". "qtrs7". load. "sdq7".

"closed") the ES knows that switch sdq7 controls power to qtrs7 which is a load. For

loads the E^S deals only with loadpaths for that specific load. For this load these would

be In one of two forms: loadpath("qtrs7". [L216f. ...]) or loadpath("qtrs7". lL215d. ...)).

This is because all loadpaths for qtrs7 begin with either line L2 16f or line L2 15d. From

the figure, one sees that opening sdq7 interrupts power from L216f. Therefore the ES

retracts the loadpaths of the form loadpath("qtrs7". lL216f. ...]). The ES next needs to

determine if the load. qtrs7. was de-energized. If any loadpaths of the form

loadpath("qtrs7", [L215d. ...)) exist the load remains energized. Otherwise the load was

de-energized. If the load were de-energized, the E^ asserts the inferred fact that the load

named qtrs7 was de-energized. deen("qtrs7"), into working memory .

As an example of interrupting power flow through a distribution line consider

the command 'open sdl 14'. This switch is shown in figure 1. This results in the ES

finding the clauses binfo("ns4". "LI 14". "load". "sdll4", "closed"). The ES now recognizes

that opening sdl 14 interrupts power flow through the line named LI 14. To determine

what loads may be de-energized the ES needs to determine which loadpaths this line is a

member of. Any loadpath with this clause is no longer valid and must be retracted from

working memory. The loadpath clauses are of the form

loadpath(load_name. loadpath_list). The loadpath_list lists the lines forming that

specific loadpath for the given load. The ES retracts those clauses whose loadpath_list

contains L114 as a member. Any given load which has had all its loadpath clauses

invalidated has been de-energized. To signify de-energized loads the ES asserts clauses

of the form deen(loadname).

The ES determines how a branch element fault affects the system in two steps.

First it determines the switches which must be opened to isolate the fault. Second it

evaluates the effects of opening the switches. The methodology Just reviewed for

evaluating the effects of opening switches remains unchanged.

To isolate the fault the ES begins by checking if the faulted branch element has a

breaker. This initial step is accomplished with the rule:

open the faulted branch's breaker if

assert that branch element as ooc and (1)

it has a breaker and (2)

assert the breaker and branch element as lost and (3)

retract that breaker as open and (4)

determine de-energized loads and (5)

continue isolating fault. (6)

www.manaraa.com

www.manaraa.com

56
To further Isolate a fault the ES must fan outward from the fault along all possible

paths. The first switching device along each path becomes the fault boundary for that

path. To complete this procedure the ES must recognize all the possible branch

combinations and know how to handle each. Figure 15 illustrates the five possible

branch situations. While any type branch—source, line, or load—may be considered, the

examples will use line branches for simplicity.

enAl

sdA /
lineA

nDl /^ sdD
°ir\

Hi^D

lineE y.

iynsdC

nl hneC

lineB

n2
sdE

fijfure 15: Line S^ment Types

The binfo clauses of interest for figure 1 5 follow:

binfo("nl"."UneA"."none". "closed") binfo("nAl"."lineA"."sdA"."open")

binfo("nl"."llneB"."none"."closed") binfo("n2"."lineB"."none". "closed")

binfo("nl"."lineC"."sdC"."closed")

blnfo("nl"."lineD"."none"."closed") binfo("nDl"."lineD"."sdD"."closed")

binfo("n2"."lineE"."sdE","open")

Because the previous rule opens switches adjacent to the fault line, the starting point in

isolating any fault will either a type A line, a line with an open switch at one end and no

switch at the other end. or type B line, a line without switches at either end. To

Illustrate the ES actions, assume a short circuit line fault occurs on line A and that sdA

was originally closed. The initial rule Just discussed opens sdA. asserts into working

memory that line A and sdA are lost, and that lineA is OOC. The ES must now move off

llneA and determine the remainder of the fault isolation area. This rule is:

given nl and line A continue isolation search if

there is another branch connected to n2 and (1)

that branch has not been considered before and (2)

using nl and that branch continue isolation search. (3)

www.manaraa.com

www.manaraa.com

57
The left hand side (Ihs) of the rule establishes the last branch considered. Lines 1 and 2

determine If there is another branch to be searched. Line 3 is a recursive call to cause

the search to continue from the old node down the new branch. For this example

assume the ES found line D as the next branch. The rule for this type line is:

given nl and line D continue isolation sccirch if

the branch clause is binfo(nl, line D._, none.closed) and (1)

there exists the clause blnfo(ndl, line D,_.sdD,closed) and (2)

sdD represents a switching device and (3)

open sdD, retract sdD closed and (4)

assert sdD as lost and (5)

determine de-energized loads and (6)

fail. (7)

This rule recognizes that the end of the branch connected to the search node, nl, doesn't

have a switch in line (1). The other end of the branch, at nDl, does have a closed switch

(lines 2&3). Line (4) asserts a clause noting that the switch is opened and retracts the

clause indicating the switch was closed. Llne(7) causes the rule to fall. The fail

predicate causes the ES to backtrack to nl to continue the search. Using the fail

predicate conserves stack resources and speeds program execution. The type A rule now

must find another path, assume line C. The rule for type C branches is:

given nl and line C continue isolation search if

the branch clause is binfo{nl, line C._, sdCclosed) and (1)

sdC represents a switching device and (2)

open sdC. retract sdC closed and (3)

assert sdC as lost and (4)

determine de-energized loads and (5)

fail. (6)

In this rule lines 1 &2 identify the element having a closed switch adjacent to the search

node. The switch is opened to isolate the fault. This rule also falls to cause

backtracking. The LineA rule next tries Une B. The rule for a type B line is:

given n 1 and line B continue Isolation search if

the branch clause is binfo(nl,line B._,none.closed) and (1)

there exists the clause binfo(n2,llne B,_,none,closed) and (2)

assert line Is lost and (3)

there is another branch connected to n2 and (4)

that branch has not been considered before and (5)

n2 and that branch continue Isolation search. (6)

www.manaraa.com

www.manaraa.com

58
This rule moves the search point from one end of the branch to the other. At node n2

there Is one remaining branch, line E. Its rule:

given n2 and line E continue Isolation search If

the branch clause Is blnfo(n2,llne E,_,sdE,open) and (1)

sdE represents a switching device and (2)

assert sdE as lost and (3)

fall. (4)

This rule handles the situation of encountering an open switch. The only working

memory adjustment needing to be made Is. lost(sdE). Indicating that switch sdE is lost

from service. This clause Is Inserted Into working memory so that the ES knows it

cannot later close this switch as part of a possible load recovery path. This rule also

falls causing backtracking to check for other branches.

Through backtracking each node Is checked for all branches. Checking all

branches at every node Isolates the fault. When the backtracking is complete each of

these rules will have failed and control returns to the calling rule. Prolog then looks for

another version of the calling rule which can be evaluated as true. That version updates

the distribution line energized hst.

Re-ener^zing De-energized loads

Problem Nature. During the analysis of faults the ES inserts Into working

memory facts indicating ooc switching devices, lines within a fault isolation area, and

loads de-energized from either a single element fault or from the opening of a breaker.

To restore power to a de-energlzed load there must be a path from the load over usable

lines £ind through usable switching devices to an energized line. By examining the

system topology and the status of the system lines and switches leading away from each

de-energlzed load the ES can determine potential restoration paths. In analyzing line

status the ES checks that the line branch's status Isn't 'lost' and if It Is 'energized.' 'Lost'

lines cannot be included in restoration paths. When the ES reaches an energized line it

has completed a restoration path. For switching devices, the ES isn't concerned about

thefr positions but only If they are available for service—not 'lost.' When the open

switches are closed the restoration path cind the de-energized load become energized.

UseT/ES Interaction. To direct the ES the user gives the command 'restore.' The

ES first finds a de-energized load and tells the user a restoration path Is being sought for

that load. If a restoration path is found the ES lists the distribution lines that make up

the potential loadpath from the load to the energized line. The ES also lists the

www.manaraa.com

www.manaraa.com

59
switching devices for those lines. After the ES finds all possible paths it will print out

the message ' no further paths .' The process repeats itself until all de-energized loads

have been checked. When all loads have been checked the ES lists those loads for which

there were no restoration path.

Methodology. The ES uses two rules to find restoration paths for de-energized

loads. These are:

rule 1: restore with Branch, Path_list. & Switch_list if

current branch is energized and (1)

assert the restorative Pathjist and Swltch_hst and (2)

write the Pathjist and Switch_list. (3)

rule 2: restore with Branch. Pathjist. & Switch_list if

Branch is not energized and (1)

Node/Branch has not been considered and (2)

Branch and its switching device are not 'lost' and (3)

append its switching device to Swltchjist and (4)

there Is a Branch2 which connects to Branch and (5)

Node/Branch2 has not been considered and (6)

Branch2 and its switching device are not 'lost' and (7)

Branch2 is not a load and (8)

append Branch2's switch to Swltchjist £ind (9)

append Branch2 to Path_list and (10)

restore with Branch2. Pathjist. & Swltchjist. (11)

Rule 1 is the termination rule. When the branch under consideration Is an energized

branch the path Is completed (line 1). Line (2) asserts into working memory the

Path_list and Switch_list. Line (3) displays the solution to the user. The solution

includes the list of lines and switching devices In the restoration path. All the lines

will be unenerglzed except the last line. The list begins at the load £ind terminates with

the energized branch. To see If any alternative restoration paths exist, the ES must

backtrack along the list of unenerglzed lines making up the first restoration path. This

search Is done by the ES forcing backtracking through these two rules until no further

solutions are found.

Rule 2 does the actual search for candidate lines. When searching to find the

first solution only lines (2) through (1 1) are necessary. However, to force backtracking

after having found a solution path, line (1) Is necessary. Line (1) forces the search back

down the unenerglzed line list. Lines (5). (6) and (2) jointly select node/branch

combinations to examine the system topology leading away fi-om a de-energized load.

www.manaraa.com

www.manaraa.com

60
During the first pass through this rule the node/branch pair Is the de-energized load

and the node that connects the load to the rest of the system. Since this is the first time

through the rule, line (2) is satisfied. Line (3) checks that the switching device for this

node/branch pair can be closed and allow power flow through the branch. The switch Is

appended to the Switch_list in line (4). Lines (5) and (6) find a connecting branch which

hasn't previously been considered. On the first pass through the rule, Branch2 will be

the branch which connects to the de-energized load. The found node will be the node in

common with the de-energized load. Line (5) finds this node/branch psilr. Line (6)

verifies that this pair have not been previously considered. Additionally, to add this

branch to the restoration list it must not have a 'lost' switching device, itself be 'lost', or

be a load. The 'load' test prohibits the ES from using a load as a distribution line. Line

(11) is a recursive call with Branch2 as the new line being traveled In search of an

energized line. The node is not Included as part of the recursive call. By not including

the node In the call, line (2) finds the other node associated with Branch2 and so the ES

can find the next connecting branch. This process continues until rule one is satisfied,

another restoration path is found, or all connecting branches have been checked and

both rules fail.

Ebcamples best illustrate this process. Many of the more important loads have

two feeders to provide power. Figure 14 shows this arrangement for Quarters Group 7.

Consider the normal positions of sdq7 and sdq7b as open and closed respectively. Also

assume all of the shown lines are energized. If the user were to issue the command 'open

sdq7b' the ES would respond with a statement Indicating quarters group 7 had been de-

enei^ized. If the user were then to issue the 'restore' command the ES would seek all

restorative paths for this load. The restorative paths are:

qtrs7 to L216f through sdq7: qtrs7 to L216g through sdq7: qtrs7 to L215d through

sdqTb; and qtrs7 to L2 15e through sdqTTD. Had the user first given the command 'ooc

sdq7b'. switch sdq7b would be in working memory as a 'lost' switch. As such rule 2

would disqualify switch sdqTb from being in the restorative path and only the first two

responses would still be solutions.

As a final example consider a modification situation shown in figure 16.

Assume that L114x Is being taken out of service for some period of time. The

distribution system operation procedures require at least two sources of power for every

load. To provide for this requirement the job plans call for opening sdll4 and sdlm

long enough to cut out LI 14x and tie in temporary feeders to LI 15. Currently, the loads

shown in figure 16 have two sources of power. The normal source is from subl through

normally closed sdll4. The backup source is through normally open sdlm. The test

www.manaraa.com

www.manaraa.com

61
proposition states that the temporary feeders will assure a similar normal source and

backup source for the loads of figure 16 when LI 14x Is taken out of service. The user

needs to modify the DBMS distribution system database In such a way as to represent

the temporary feeders and to allow simulation of the proposed sequence of operations.

The difficult part is simulating the removal of Ll 14x. The 'ooc Ll 14x' command can not

be used because It simulates that Ll 14x is shorted and will form a fault Isolation area.

The alternative methods include taking the line out of the database prior to the ES's

Initial system analysis or to introduce one or more switches In Ll 14x to interrupt

power flow through Ll 14x. The later method is chosen as It allows the simulation to

more closely follow the Job sequence. From the DBMS with the 'modify' command the

user can change the entries in the BRANCH relation from

branch(nl.8,L114x,none) and branch(nl.ll,L114x,none) to

branch(nl.8.L114x.sdt3) and branch(nl.ll.L114x.sdt4).

In the BKRPOS add entries showing that sdt3 and sdt4 are closed breakers. When the

E^'s relation preparation program runs the system description database BINFO will

show

binfo("nl.8"."Ll 14x"."line","sdt3"."closed") and

binfo("nl.ll"."L114x","line","sdt4"."closed") instead of

binfo("nl.8","Ll 14x","hne"."none","closed") and

blnfoC'nl. 1 1"."L1 14x"."lIne","none"."closed").

These modifications change the representation of line Ll 14x to Include the closed

breakers sdt3 and sdt4. The user can then give the commands 'open sdt3' and 'open sdt4'

In sequence to simulate taking Ll 14x out of service.

Also the user adds similar information to represent the temporary feeders, with

open switches, between Ll 14x and Fl 15. With these changes complete the user can move

to the ES. In the ES, the 'paths' command will begin the Initiail system analysis. Since

the Ll 14x switches are closed and the temporary feeder switches are open, the results of

the analysis will be the same normal system operating conditions as before the

database changes.

Once the Initial system analysis has been completed the user is ready to

simulate the Job plan sequence. The Job plan calls for normally open sdlm to be open

and then to open sdl 14. The ES will respond to the command 'open sdlm' with a

statement that It Is already open. The command 'open sdl 14' Is given next. The ES will

change the position of sdl 14 in working memory and then determine the affect of

opening sdl 14. The determination will result in the loads being listed as de-energized.

The command 'ooc Ll 14x' will cause the ES to consider line Ll 14x as having a fault.

www.manaraa.com

www.manaraa.com

62
This will open sdt3 and sdt4. L114x along with sdt3 and sdt4 will be placed In working

memory as lost.

With the command 'restore' the ES begins finding the restorative paths. For

each of B 1304. B6019. and 360 15 the ES finds two possible paths. The first through

sdlm to Lspld which Is energized. The second through the lower temporary feeder. LT2,

and switching device SDNTl adjacent to node nt2 to F115 which is also energized. The

remaining loads which were lost when sdl 14 was opened also have two restorative

paths. The first would be their normal loadpaths through sdl 14. The alternative would

be through the upper temporary feeder. LTl, and the switching device SDNTl adjacent

nodentl toFllS.

From these results a sjrstem manager could determine that by closing sdll4 and

sdlm the figure 16 loads would be energized. The temporary feeders. LTl and LT2. would

serve as an alternative power source when switches SDNTl and SDNT2 were closed.

The previous ES example steps are listed with their execution times in table 10.

Table 10. Example Execution Times
step execution time
relation preparation program 1 minute 40 seconds
paths 40 seconds
energized lines 58 seconds
open sdl 14 3 seconds
energized lines 58 seconds
ooc 1114x 1 second
energized lines 58 seconds
restore 39 seconds

This chapter shows how the E^ and DBMS can Jointly be used as an efi"ective

engineering aid. The ES contains the rules or methods for solving connectivity

problems on cin electrical distribution system. The DBMS serves as the source for the

system specific information. The DBMS also cdlows the user to modify the nature of the

system information by changing both switching positions and system topology.

In addition to being able to correctly solve connectivity problems the ES

ofi'ers the additional advantage of not overlooking information thereby avoiding

missed solutions. The ES is also fast. Initial system analysis of loadpaths and

energized branches takes only 40 and 58 seconds respectively.

www.manaraa.com

www.manaraa.com

F115X

NTl

F115

NT2

F115Y

N1.12

SDIM J
normally open

j
^^^.^.**- to elsewhere

LP ID ®^

Figure 16. System Modification Portion

www.manaraa.com

www.manaraa.com

Chapter IV: Conclusions

This project has investigated and demonstrated an electrical distribution

system engineering aid consisting of an ES supplemented by a DBMS. The DBMS serves

as an information manager. It provides for distribution system information

collection, storage, manipulation, and retrieval. The ES assists distribution system

managers in solving distribution system connectivity problems. The ES contains the

reasoning rules for problem solving and links with the DBMS distribution system

database for information which specifically describes the Bangor Submarine Base

distribution system.

The ES/DBMS approach demonstrates that information can be managed

separately from the ES. This approach provides several benefits. By maintaining the

information separately the user benefits from the data management strengths of a

DBMS discussed in Chapter 2. For the ES user these include: (1) reduced data gathering

costs due to central information management and (2) information consistency and

integrity as a result of central management using FNF relations. The ES need not

bother with as many data manipulation functions. This would take advantage of the

DBMS which is written to optimize these type of operations. By shedding the data base

management tasks the speed of the ES would improve.

Also, with the ES/DBMS approach the ES stands independently from the

information. The same ES can be used at different sites without modification. The

consistency of ES code between different sites would ease code upgrade. Using this

approach, these traits would hasten the development and improvement of ESs.

Concerning the ES. Human users with a variety of experience currently analyze

distribution systems to solve connectivity related problems. The human methods can

be encoded using Prolog into conditional 'if-then' rules to allow an ES program

reproduce human reasoning. Just as different correct human methods require different

amounts of effort to reach a solution. ES rules need to be carefully composed for

efficient execution. In part this Involves not having redundant subgoals in the RHS of a

rule, ff the ES has already checked a fact once, checking it unnecessarily a second time

slows down execution. Backtracking is a useful tool for finding alternative solutions,

however, inefficient backtracking is also slow. Rules which had subgoals added to

cause efficient backtracking showed significant execution improvements.

Rule based E^s can easily be expanded and modified. The first version of the ES

considered only single branch element line failures. The Inclusion of load and source

elements failures was completed without the addition of any rules. It was noticed that

www.manaraa.com

www.manaraa.com

65
generalizing the existing rules automatically accommodated load and source failures.

Since Prolog programming emphasizes individual rules the overall program structure

was not impacted. By allowing the ES user to move to the DBMS to make database

changes without exiting the ES. this project showed that the DBMS can exist In RAM

and operate without disrupting the ES.

Concerning the DBMS. The goal in writing a DBMS in Prolog was not to write

the ultimate DBMS. The DBMS did illustrate the principles of relational model

database management. The performance measurements indicate that indexing

schemes such as B-trees are necessary for Prolog coded DBMSs to be acceptably fast.

Linking the ES and DBMS. The relation preparation program used In this thesis

demonstrated that the ES can accept Information from a DBMS. The approach tgiken

transfers all the Information Into the ES at once. A better approach would allow for

querying the DBMS for specific information and then transferring that information

Into the ES's working memory. Appendix A discusses other linking approaches .

Limitations and Extensions Each of the three programs developed as part of

this thesis—the DBMS, the ES. and the relation prepsiration program—seemed quite

adequate when they were first conceived. After they were developed and used together

limitations and desired enhancements became obvious. Some of these, speed

enhancements and generalization of the single fault analysis rules, were incorporated

into the program code. Others either require more work than time was available for or

their Implementation was not apparent.

The biggest problem with the DBMS Is Its performance. Without some indexing

scheme the DBMS mcinipulations are excessively slow.

The ES demonstrates basic connectivity analysis. Currently the substations are

viewed as power sources. A more correct view would be to consider the BPA feeder and

any active generators as power sources to the substations. This Is not a difficult

extension as It would require only minor rule modifications. Because the ES views the

substations as sources, faults In the 115 kv ring can not be modeled. The ES single fault

analysis finds the closest switches which can isolate a fault. An enhancement would

also take Into account the automatic actions of breakers. This would provide for

determining what should be the automatic response of the system as well as the

minimum area to Isolate a fault. An enhancement to the restoration rules would

Include further direction as to what switches are currently open and need to be closed

and the sequence for closing the switches. As Appendix A discusses, a more

generalized link between the ES and DBMS would allow the ES to tcike advantage of the

DBMS information management strengths.

www.manaraa.com

www.manaraa.com

List of References

Allen and Pokrass. "Logic and Functional Programming". IEEE Potentials. October
1987. pp.21-24

Borland International. Inc.. "Borland Turbo Prolog version 1.1". copyright 1987.

Clocksin and Mellish. "Programming in Prolog". New York: Spring-Verlag. copyright
1984.

Damborg. Ramaswaml. Jampala, Venkata, "Application of Relational Database to

Computer-Alded-Engineering of Transmission Protection Systems". Energy Group.
Department of Electrical Engineering. University of Washington

Fagin. "Multivalued Dependencies and a New Normal Form for Relational Databases."
ACM Trans, on Database Systems . Vol. 2, No. 3. Sept. 1977. pp.262-278

Komal, Sakaguchi, and Takeda. 'Tower System Fault Diagnosis with an Eixpert System
Enhanced by the General Problem Solving Method", Mitsubishi Electric Corporation
Central Research Laboratory. Hyogo Japan

Liu. Lee, and Venkata. "An Expert System Operational Aid for Restoration and Loss
Reduction of Distribution Systems", Department of Electrical Engineering, University

of Washington

Liu cind Tomsovic, "An Elxpert System Assisting Decision-Making of Reactive

Power/Voltage Control", PICA conference. May 1985, pp.242-248

Talukdar. Cardozo. 2ind Leao. 'Toast: The Power System Operator's Assistant", IEEE
Computer, July 1986 pp53-60

Tomsovic, Liu. Ackerman, and Pope, "An Expert System as a Dispatchers' Aid for the
Isolation of Line Section Faults", copyright 1986 IEEE

Tsichritzis and Lochovslty. "Data Base Management Systems". Academic Press. New
York, copyright 1977.

www.manaraa.com

www.manaraa.com

Appendix A: Prolog DBMS Links

For the tjTJlcal ES both the rules and problem facts are part of the program code.

The rules and facts establish what the program knows at program execution. The user

queries the ES to start its solution mechanism. The E^ examines facts and rules

drawing inferences, asserting new facts, and retracting facts to reach a solution. When

the inference engine is trying to match a proposed fact against the known facts, the

program starts at the first clause fact and works its way down the clause fact list until

the match is achieved. For large amounts of data this sequential search is relatively

slow.

This project maintains that the ES rules and problem Information should be

maintained separately. Several factors support this position. Beyond the arguments

that information should be centrally collected and managed, not all problem facts are

static in nature. A DBMS based database easily accommodates the need to change

information concerning a problem. ESs are not as efficient as DBMSs for data

manipulation. Commercial DBMSs use indexing schemes to reduce data search eflfort

and improve performance. Linking with a DBMS could provide rapid retrieval of

information required by the ES. As well as being fast in directly looking up

information the DBMS rapidly performs relational operations. An ideal ES/DBMS

link would Eillow the storage of problem information outside RAM. The ES could then

access much more information than it could if all problem facts had to always reside in

RAM. The E^ could also store new inferred facts off line as DBMS relations. There is no

question of merit in linking a DBMS to an ES but rather only of methodology.

The relation preparation program used in this project takes advantage of some

of these arguments. This approach does not. however, provide a general information

linkage between the ES and the DBMS. Brief discussions of more general potential

methods of linking ESs £ind DBMSs together follow. The alternatives considered are:

1) direct access to a DBMS dataflles with data manipulation by the ES;

2) linking to a DBMS with program or command files;

3) incorporating DBMS procedures within the ES.

www.manaraa.com

www.manaraa.com

68
Accessing the DBMS Datafiles

Accessing of DBMS datallles means the ES C8in read the DBMS's information

from its datafiles. Use of the DBMS dataflle accommodates the Issues of expanding the

facts available to the ES beyond the RAM capacity and the consideration that data is

not always time invariant.

Commercial DBMSs such Rbase 5000 & dBaselE encode a description of the

dataflle structure. Properly reading this description reveals the structure of datafile.

Both applications store data as a mixed binary/ASCII file. The datafile can be

sequentially read and, as desired, the vsiriables bound as E^ fact statements. By storing

and retrieving data in this manner RAM is used only for the data germane to the current

problem solution. This sequentially reading of data while as efficient as the process

used by Prolog, fails to take advantage of the more efficient index based retrieval used

by DBMS. While the original benefits of non-RAM data storage still exists, execution

time is increased as reading information from a disc file is slower than RAM access.

Access to data could be improved if the indexflle could be interpreted. Using the

indexfile would allow more direct 8ind faster access to the Information. However, as the

DBMS manufacturers considered information the tndexfile's construction proprietary,

its structure is not readily available. E>en if the indexflle could be read this approach

would probably still be a 'read-only' approach. Without the ability to update the

Indexfile one could not write information to the DBMS. Also this method does not

provide for relational manipulations.

Linking via a File

Commercial DBMSs provide for interactive data manipulation at the prompt

level. In this mode the user Issues a specific command and the system complies with it.

By using a text editor to develop a list of commands the user can develop a program file

of commands for the DBMS to execute. It seems reasonable that Prolog could generate a

command file such that procedures could be run or more specific searches could be made

of datafiles. Prolog does provide a command for invoking DOS commands. So

conceptually. Prolog generates a command file then Invokes the DBMS to run the file.

Prolog allows for the DOS command to invoke the DBMS, the DBMS performs whatever

data manipulation is required, an output file is generated, program control returns to

the ES. and the E^S reads in the file. System performance may be acceptable through the

www.manaraa.com

www.manaraa.com

69
use of hard disks and RAM disks. This approach remains RAM intensive and does not

provide for moving ES inferred facts into the DBMS.

Incorporating DBBSS Procedures

Incorporating DBMS procedures in an ES involves taking the code from a full

featured DBMS and incorporating whose desired portions into the ES code. This

technique is typified by the Program Interface, PI. product for Rbase 5000. The PI code

package is a set of DBMS routines which are linkable to Microsoft Pascal, C, £ind

FORTRAN programs.

With this technique a Pascal, C, or FORTRAN program is written which takes

advantage of the DBMS file PI procedures. The PI product once Incorporated into the

application program no longer requires the Rbase 5000 program code. All that is

required is that the database exists. It works directly with the database files.

As Prolog claims it could incorporate procedures written in .OBJ compilable

Pascal. C, and FORTRAN, this approach was examined. After achieving only limited

success, Borland technical representatives were consulted. They indicated that 'simple'

procedure calls were indeed supported. However, as each implementation of higher

level languages handled compilation diflFerently, complex calls would not likely work.

Borland has announced a fully compatible version of C that was developed with the idea

of being able to fully link with Borland Prolog. If a version of the Program Interface

were made available that was compatible with Borland C it could be linked to a Prolog

based ES. Should DBMS features be incorporated into the ES, most of the advantages of

the DBMS would be realized.

www.manaraa.com

www.manaraa.com

Appendix B: System Requirements

The DMBS. ES, and relation preparation programs are all Implemented in

Borland Turbo Prolog. Borland Indicates the minimum system requirements to use

Turbo Prolog as:

IBM PC or compatible computer;

384KRAM;

PC-DOS or MS-DOS operating system, version 2.0 or later.

Prolog allows program code to be complied directly to memory while working in the

Prolog language. Because of the Prolog system code residing in RAM at the same time

the complied program code resides In FIAM, 640K RAM and a hard disk are necessary to

allow working with reasonably large databases.

However, Borland Prolog also allows the generation of stand alone programs.

To run the compiled programs the Borland Turbo Prolog product is not necessary. The

DBMS is the largest application developed as part of this project. The DBMS code, the

MSDOS. and stack overhead requires approximately 200K. Memory greater than this is

available for relation storage and manipulation.

The ES and the DBMS programs as well as all files must reside in the same

directory. The user activates either program by typing that program's name.

www.manaraa.com

www.manaraa.com

Appen^x C : DBMS Command Summary

select 'relation name'

help

enter ('relation name')

new 'relation name'

view select ('relation name')

view sill ('relation name')

modify ('relation name')

-global change with no prompting

-global change with prompting

-delete records, no prompting

-Individual record chcinges

project 'existing relation name' 'new relation name'

Join ' existing relation name' 'existing relation name' 'new relation name'

dir

erase

Info

clock

quit

(...) Indicates optional command

www.manaraa.com

1 8 7 e 7 . 1 -7'<,

www.manaraa.com

www.manaraa.com

www.manaraa.com

S^TT-; 3 SCHOOL -^

Thesis
L793245
c.l

Long
An expert system

supplement by a database
management system ser-
ving as an electrical
distribution system
engineering aid.

Thesis

L793245

c.l

Long
^n »y.r)<!»rt system

supplement by a database
management system ser-
ving as an electrical
distribution system
engineering aid.

www.manaraa.com

